add parallel wavegan model
This commit is contained in:
parent
759999c738
commit
3c964fde54
|
@ -0,0 +1,438 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
import numpy as np
|
||||
import paddle
|
||||
from paddle import nn
|
||||
from paddle.nn import functional as F
|
||||
|
||||
|
||||
class Stretch2D(nn.Layer):
|
||||
def __init__(self, x_scale, y_scale, mode="nearest"):
|
||||
super().__init__()
|
||||
self.x_scale = x_scale
|
||||
self.y_scale = y_scale
|
||||
self.mode = mode
|
||||
|
||||
def forward(self, x):
|
||||
out = F.interpolate(
|
||||
x, scale_factor=(self.y_scale, self.x_scale), mode=self.mode)
|
||||
return out
|
||||
|
||||
|
||||
class UpsampleNet(nn.Layer):
|
||||
def __init__(self,
|
||||
upsample_scales,
|
||||
nonlinear_activation=None,
|
||||
nonlinear_activation_params={},
|
||||
interpolate_mode="nearest",
|
||||
freq_axis_kernel_size=1,
|
||||
use_causal_conv=False):
|
||||
super().__init__()
|
||||
self.use_causal_conv = use_causal_conv
|
||||
self.up_layers = nn.LayerList()
|
||||
for scale in upsample_scales:
|
||||
stretch = Stretch2D(scale, 1, interpolate_mode)
|
||||
assert freq_axis_kernel_size % 2 == 1
|
||||
freq_axis_padding = (freq_axis_kernel_size - 1) // 2
|
||||
kernel_size = (freq_axis_kernel_size, scale * 2 + 1)
|
||||
if use_causal_conv:
|
||||
padding = (freq_axis_padding, scale * 2)
|
||||
else:
|
||||
padding = (freq_axis_padding, scale)
|
||||
conv = nn.Conv2D(
|
||||
1, 1, kernel_size, padding=padding, bias_attr=False)
|
||||
if nonlinear_activation is not None:
|
||||
nonlinear = getattr(
|
||||
nn, nonlinear_activation)(**nonlinear_activation_params)
|
||||
self.up_layers.extend([stretch, conv, nonlinear])
|
||||
|
||||
def forward(self, c):
|
||||
c = c.unsqueeze(1)
|
||||
for f in self.up_layers:
|
||||
if self.use_causal_conv and isinstance(f, nn.Conv2D):
|
||||
c = f(c)[:, :, :, c.shape[-1]]
|
||||
else:
|
||||
c = f(c)
|
||||
return c.squeeze(1)
|
||||
|
||||
|
||||
class ConvInUpsampleNet(nn.Layer):
|
||||
def __init__(self,
|
||||
upsample_scales,
|
||||
nonlinear_activation=None,
|
||||
nonlinear_activation_params={},
|
||||
interpolate_mode="nearest",
|
||||
freq_axis_kernel_size=1,
|
||||
aux_channels=80,
|
||||
aux_context_window=0,
|
||||
use_causal_conv=False):
|
||||
super().__init__()
|
||||
self.aux_context_window = aux_context_window
|
||||
self.use_causal_conv = use_causal_conv and aux_context_window > 0
|
||||
kernel_size = aux_context_window + 1 if use_causal_conv else 2 * aux_context_window + 1
|
||||
self.conv_in = nn.Conv1D(
|
||||
aux_channels,
|
||||
aux_channels,
|
||||
kernel_size=kernel_size,
|
||||
bias_attr=False)
|
||||
self.upsample = UpsampleNet(
|
||||
upsample_scales=upsample_scales,
|
||||
nonlinear_activation=nonlinear_activation,
|
||||
nonlinear_activation_params=nonlinear_activation_params,
|
||||
interpolate_mode=interpolate_mode,
|
||||
freq_axis_kernel_size=freq_axis_kernel_size,
|
||||
use_causal_conv=use_causal_conv)
|
||||
|
||||
def forward(self, c):
|
||||
c_ = self.conv_in(c)
|
||||
c = c_[:, :, :-self.aux_context_window] if self.use_causal_conv else c_
|
||||
return self.upsample(c)
|
||||
|
||||
|
||||
class ResidualBlock(nn.Layer):
|
||||
def __init__(self,
|
||||
kernel_size=3,
|
||||
residual_channels=64,
|
||||
gate_channels=128,
|
||||
skip_channels=64,
|
||||
aux_channels=80,
|
||||
dropout=0.,
|
||||
dilation=1,
|
||||
bias=True,
|
||||
use_causal_conv=False):
|
||||
super().__init__()
|
||||
self.dropout = dropout
|
||||
if use_causal_conv:
|
||||
padding = (kernel_size - 1) * dilation
|
||||
else:
|
||||
assert kernel_size % 2 == 1
|
||||
padding = (kernel_size - 1) // 2 * dilation
|
||||
self.use_causal_conv = use_causal_conv
|
||||
|
||||
self.conv = nn.Conv1D(
|
||||
residual_channels,
|
||||
gate_channels,
|
||||
kernel_size,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
bias_attr=bias)
|
||||
if aux_channels is not None:
|
||||
self.conv1x1_aux = nn.Conv1D(
|
||||
aux_channels, gate_channels, kernel_size=1, bias_attr=False)
|
||||
else:
|
||||
self.conv1x1_aux = None
|
||||
|
||||
gate_out_channels = gate_channels // 2
|
||||
self.conv1x1_out = nn.Conv1D(
|
||||
gate_out_channels,
|
||||
residual_channels,
|
||||
kernel_size=1,
|
||||
bias_attr=bias)
|
||||
self.conv1x1_skip = nn.Conv1D(
|
||||
gate_out_channels, skip_channels, kernel_size=1, bias_attr=bias)
|
||||
|
||||
def forward(self, x, c):
|
||||
x_input = x
|
||||
x = F.dropout(x, self.dropout, training=self.training)
|
||||
x = self.conv(x)
|
||||
x = x[:, :, x_input.shape[-1]] if self.use_causal_conv else x
|
||||
if c is not None:
|
||||
c = self.conv1x1_aux(c)
|
||||
x += c
|
||||
|
||||
a, b = paddle.chunk(x, 2, axis=1)
|
||||
x = paddle.tanh(a) * F.sigmoid(b)
|
||||
|
||||
skip = self.conv1x1_skip(x)
|
||||
res = (self.conv1x1_out(x) + x_input) * math.sqrt(0.5)
|
||||
return res, skip
|
||||
|
||||
|
||||
class PWGGenerator(nn.Layer):
|
||||
def __init__(self,
|
||||
in_channels=1,
|
||||
out_channels=1,
|
||||
kernel_size=3,
|
||||
layers=30,
|
||||
stacks=3,
|
||||
residual_channels=64,
|
||||
gate_channels=128,
|
||||
skip_channels=64,
|
||||
aux_channels=80,
|
||||
aux_context_window=2,
|
||||
dropout=0.,
|
||||
bias=True,
|
||||
use_weight_norm=True,
|
||||
use_causal_conv=False,
|
||||
upsample_scales=[4, 4, 4, 4],
|
||||
nonlinear_activation=None,
|
||||
nonlinear_activation_params={},
|
||||
interpolate_mode="nearest",
|
||||
freq_axis_kernel_size=1):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.aux_channels = aux_channels
|
||||
self.aux_context_window = aux_context_window
|
||||
self.layers = layers
|
||||
self.stacks = stacks
|
||||
self.kernel_size = kernel_size
|
||||
|
||||
assert layers % stacks == 0
|
||||
layers_per_stack = layers // stacks
|
||||
|
||||
self.first_conv = nn.Conv1D(
|
||||
in_channels, residual_channels, 1, bias_attr=True)
|
||||
self.upsample_net = ConvInUpsampleNet(
|
||||
upsample_scales=upsample_scales,
|
||||
nonlinear_activation=nonlinear_activation,
|
||||
nonlinear_activation_params=nonlinear_activation_params,
|
||||
interpolate_mode=interpolate_mode,
|
||||
freq_axis_kernel_size=freq_axis_kernel_size,
|
||||
aux_channels=aux_channels,
|
||||
aux_context_window=aux_context_window,
|
||||
use_causal_conv=use_causal_conv)
|
||||
self.upsample_factor = np.prod(upsample_scales)
|
||||
|
||||
self.conv_layers = nn.LayerList()
|
||||
for layer in range(layers):
|
||||
dilation = 2**(layer % layers_per_stack)
|
||||
conv = ResidualBlock(
|
||||
kernel_size=kernel_size,
|
||||
residual_channels=residual_channels,
|
||||
gate_channels=gate_channels,
|
||||
skip_channels=skip_channels,
|
||||
aux_channels=aux_channels,
|
||||
dilation=dilation,
|
||||
dropout=dropout,
|
||||
bias=bias,
|
||||
use_causal_conv=use_causal_conv)
|
||||
self.conv_layers.append(conv)
|
||||
|
||||
self.last_conv_layers = nn.Sequential(
|
||||
nn.ReLU(),
|
||||
nn.Conv1D(
|
||||
skip_channels, skip_channels, 1, bias_attr=True),
|
||||
nn.ReLU(),
|
||||
nn.Conv1D(
|
||||
skip_channels, out_channels, 1, bias_attr=True))
|
||||
|
||||
if use_weight_norm:
|
||||
self.apply_weight_norm()
|
||||
|
||||
def forward(self, x, c):
|
||||
if c is not None:
|
||||
c = self.upsample_net(c)
|
||||
assert c.shape[-1] == x.shape[-1]
|
||||
|
||||
x = self.first_conv(x)
|
||||
skips = 0
|
||||
for f in self.conv_layers:
|
||||
x, s = f(x, c)
|
||||
skips += s
|
||||
skips *= math.sqrt(1.0 / len(self.conv_layers))
|
||||
|
||||
x = self.last_conv_layers(skips)
|
||||
return x
|
||||
|
||||
def apply_weight_norm(self):
|
||||
def _apply_weight_norm(layer):
|
||||
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
|
||||
nn.utils.weight_norm(layer)
|
||||
|
||||
self.apply(_apply_weight_norm)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
def _remove_weight_norm(layer):
|
||||
try:
|
||||
nn.utils.remove_weight_norm(layer)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
self.apply(_remove_weight_norm)
|
||||
|
||||
def inference(self, c=None, x=None):
|
||||
"""
|
||||
single instance inference
|
||||
c: [T', C] condition
|
||||
x: [T, 1] noise
|
||||
"""
|
||||
if x is not None:
|
||||
x = paddle.transpose(x, [1, 0]).unsqueeze(0) # pseudo batch
|
||||
else:
|
||||
assert c is not None
|
||||
x = paddle.randn([1, 1, c.shape[0] * self.upsample_factor])
|
||||
|
||||
if c is not None:
|
||||
c = paddle.transpose(c, [1, 0]).unsqueeze(0) # pseudo batch
|
||||
c = nn.Pad1D(self.aux_context_window, mode='edge')(c)
|
||||
out = self.forward(x, c).squeeze(0).transpose([1, 0])
|
||||
return out
|
||||
|
||||
|
||||
class PWGDiscriminator(nn.Layer):
|
||||
def __init__(self,
|
||||
in_channels=1,
|
||||
out_channels=1,
|
||||
kernel_size=3,
|
||||
layers=10,
|
||||
conv_channels=64,
|
||||
dilation_factor=1,
|
||||
nonlinear_activation="LeakyReLU",
|
||||
nonlinear_activation_params={"negative_slope": 0.2},
|
||||
bias=True,
|
||||
use_weight_norm=True):
|
||||
super().__init__()
|
||||
assert kernel_size % 2 == 1
|
||||
assert dilation_factor > 0
|
||||
conv_layers = []
|
||||
conv_in_channels = in_channels
|
||||
for i in range(layers - 1):
|
||||
if i == 0:
|
||||
dilation = 1
|
||||
else:
|
||||
dilation = i if dilation_factor == 1 else dilation_factor**i
|
||||
conv_in_channels = conv_channels
|
||||
padding = (kernel_size - 1) // 2 * dilation
|
||||
conv_layer = nn.Conv1D(
|
||||
conv_in_channels,
|
||||
conv_channels,
|
||||
kernel_size,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
bias_attr=bias)
|
||||
nonlinear = getattr(
|
||||
nn, nonlinear_activation)(**nonlinear_activation_params)
|
||||
conv_layers.append(conv_layer)
|
||||
conv_layers.append(nonlinear)
|
||||
padding = (kernel_size - 1) // 2
|
||||
last_conv = nn.Conv1D(
|
||||
conv_in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
padding=padding,
|
||||
bias_attr=bias)
|
||||
conv_layers.append(last_conv)
|
||||
self.conv_layers = nn.Sequential(*conv_layers)
|
||||
|
||||
if use_weight_norm:
|
||||
self.apply_weight_norm()
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv_layers(x)
|
||||
|
||||
def apply_weight_norm(self):
|
||||
def _apply_weight_norm(layer):
|
||||
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
|
||||
nn.utils.weight_norm(layer)
|
||||
|
||||
self.apply(_apply_weight_norm)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
def _remove_weight_norm(layer):
|
||||
try:
|
||||
nn.utils.remove_weight_norm(layer)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
self.apply(_remove_weight_norm)
|
||||
|
||||
|
||||
class ResidualPWGDiscriminator(nn.Layer):
|
||||
def __init__(self,
|
||||
in_channels=1,
|
||||
out_channels=1,
|
||||
kernel_size=3,
|
||||
layers=30,
|
||||
stacks=3,
|
||||
residual_channels=64,
|
||||
gate_channels=128,
|
||||
skip_channels=64,
|
||||
dropout=0.,
|
||||
bias=True,
|
||||
use_weight_norm=True,
|
||||
use_causal_conv=False,
|
||||
nonlinear_activation="LeakyReLU",
|
||||
nonlinear_activation_params={"negative_slope": 0.2}):
|
||||
super().__init__()
|
||||
assert kernel_size % 2 == 1
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.layers = layers
|
||||
self.stacks = stacks
|
||||
self.kernel_size = kernel_size
|
||||
|
||||
assert layers % stacks == 0
|
||||
layers_per_stack = layers // stacks
|
||||
|
||||
self.first_conv = nn.Sequential(
|
||||
nn.Conv1D(
|
||||
in_channels, residual_channels, 1, bias_attr=True),
|
||||
getattr(nn, nonlinear_activation)(**nonlinear_activation_params))
|
||||
|
||||
self.conv_layers = nn.LayerList()
|
||||
for layer in range(layers):
|
||||
dilation = 2**(layer % layers_per_stack)
|
||||
conv = ResidualBlock(
|
||||
kernel_size=kernel_size,
|
||||
residual_channels=residual_channels,
|
||||
gate_channels=gate_channels,
|
||||
skip_channels=skip_channels,
|
||||
aux_channels=None, # no auxiliary input
|
||||
dropout=dropout,
|
||||
dilation=dilation,
|
||||
bias=bias,
|
||||
use_causal_conv=use_causal_conv)
|
||||
self.conv_layers.append(conv)
|
||||
|
||||
self.last_conv_layers = nn.Sequential(
|
||||
getattr(nn, nonlinear_activation)(**nonlinear_activation_params),
|
||||
nn.Conv1D(
|
||||
skip_channels, skip_channels, 1, bias_attr=True),
|
||||
getattr(nn, nonlinear_activation)(**nonlinear_activation_params),
|
||||
nn.Conv1D(
|
||||
skip_channels, out_channels, 1, bias_attr=True))
|
||||
|
||||
if use_weight_norm:
|
||||
self.apply_weight_norm()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.first_conv(x)
|
||||
skip = 0
|
||||
for f in self.conv_layers:
|
||||
x, h = f(x, None)
|
||||
skip += h
|
||||
skip *= math.sqrt(1 / len(self.conv_layers))
|
||||
|
||||
x = skip
|
||||
x = self.last_conv_layers(x)
|
||||
return x
|
||||
|
||||
def apply_weight_norm(self):
|
||||
def _apply_weight_norm(layer):
|
||||
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
|
||||
nn.utils.weight_norm(layer)
|
||||
|
||||
self.apply(_apply_weight_norm)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
def _remove_weight_norm(layer):
|
||||
try:
|
||||
nn.utils.remove_weight_norm(layer)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
self.apply(_remove_weight_norm)
|
|
@ -0,0 +1,138 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle
|
||||
from paddle import nn
|
||||
from paddle.nn import functional as F
|
||||
|
||||
from parakeet.modules.audio import STFT
|
||||
|
||||
|
||||
class SpectralConvergenceLoss(nn.Layer):
|
||||
"""Spectral convergence loss module."""
|
||||
|
||||
def __init__(self):
|
||||
"""Initilize spectral convergence loss module."""
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x_mag, y_mag):
|
||||
"""Calculate forward propagation.
|
||||
Args:
|
||||
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, C, T).
|
||||
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, C, T).
|
||||
Returns:
|
||||
Tensor: Spectral convergence loss value.
|
||||
"""
|
||||
return paddle.norm(
|
||||
y_mag - x_mag, p="fro") / paddle.norm(
|
||||
y_mag, p="fro")
|
||||
|
||||
|
||||
class LogSTFTMagnitudeLoss(nn.Layer):
|
||||
"""Log STFT magnitude loss module."""
|
||||
|
||||
def __init__(self):
|
||||
"""Initilize los STFT magnitude loss module."""
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x_mag, y_mag):
|
||||
"""Calculate forward propagation.
|
||||
Args:
|
||||
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
|
||||
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
|
||||
Returns:
|
||||
Tensor: Log STFT magnitude loss value.
|
||||
"""
|
||||
return F.l1_loss(paddle.log(y_mag), paddle.log(x_mag))
|
||||
|
||||
|
||||
class STFTLoss(nn.Layer):
|
||||
"""STFT loss module."""
|
||||
|
||||
def __init__(self,
|
||||
fft_size=1024,
|
||||
shift_size=120,
|
||||
win_length=600,
|
||||
window="hann_window"):
|
||||
"""Initialize STFT loss module."""
|
||||
super().__init__()
|
||||
self.fft_size = fft_size
|
||||
self.shift_size = shift_size
|
||||
self.win_length = win_length
|
||||
self.stft = STFT(
|
||||
n_fft=fft_size,
|
||||
hop_length=shift_size,
|
||||
win_length=win_length,
|
||||
window=window)
|
||||
self.spectral_convergence_loss = SpectralConvergenceLoss()
|
||||
self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss()
|
||||
|
||||
def forward(self, x, y):
|
||||
"""Calculate forward propagation.
|
||||
Args:
|
||||
x (Tensor): Predicted signal (B, T).
|
||||
y (Tensor): Groundtruth signal (B, T).
|
||||
Returns:
|
||||
Tensor: Spectral convergence loss value.
|
||||
Tensor: Log STFT magnitude loss value.
|
||||
"""
|
||||
x_mag = self.stft.magnitude(x)
|
||||
y_mag = self.stft.magnitude(y)
|
||||
sc_loss = self.spectral_convergence_loss(x_mag, y_mag)
|
||||
mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag)
|
||||
|
||||
return sc_loss, mag_loss
|
||||
|
||||
|
||||
class MultiResolutionSTFTLoss(nn.Layer):
|
||||
"""Multi resolution STFT loss module."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
fft_sizes=[1024, 2048, 512],
|
||||
hop_sizes=[120, 240, 50],
|
||||
win_lengths=[600, 1200, 240],
|
||||
window="hann", ):
|
||||
"""Initialize Multi resolution STFT loss module.
|
||||
Args:
|
||||
fft_sizes (list): List of FFT sizes.
|
||||
hop_sizes (list): List of hop sizes.
|
||||
win_lengths (list): List of window lengths.
|
||||
window (str): Window function type.
|
||||
"""
|
||||
super().__init__()
|
||||
assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
|
||||
self.stft_losses = nn.LayerList()
|
||||
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
|
||||
self.stft_losses.append(STFTLoss(fs, ss, wl, window))
|
||||
|
||||
def forward(self, x, y):
|
||||
"""Calculate forward propagation.
|
||||
Args:
|
||||
x (Tensor): Predicted signal (B, T).
|
||||
y (Tensor): Groundtruth signal (B, T).
|
||||
Returns:
|
||||
Tensor: Multi resolution spectral convergence loss value.
|
||||
Tensor: Multi resolution log STFT magnitude loss value.
|
||||
"""
|
||||
sc_loss = 0.0
|
||||
mag_loss = 0.0
|
||||
for f in self.stft_losses:
|
||||
sc_l, mag_l = f(x, y)
|
||||
sc_loss += sc_l
|
||||
mag_loss += mag_l
|
||||
sc_loss /= len(self.stft_losses)
|
||||
mag_loss /= len(self.stft_losses)
|
||||
|
||||
return sc_loss, mag_loss
|
Loading…
Reference in New Issue