add synthesis script for pwg

This commit is contained in:
chenfeiyu 2021-06-26 19:31:46 +08:00
parent 7e049a7744
commit 3e8a156348
3 changed files with 84 additions and 3 deletions

View File

@ -0,0 +1,81 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import logging
import argparse
from pathlib import Path
import yaml
import jsonlines
import paddle
import numpy as np
import soundfile as sf
from paddle import distributed as dist
from parakeet.datasets.data_table import DataTable
from parakeet.models.parallel_wavegan import PWGGenerator
from config import get_cfg_default
parser = argparse.ArgumentParser(
description="synthesize with parallel wavegan.")
parser.add_argument(
"--config", type=str, help="config file to overwrite default config")
parser.add_argument("--params", type=str, help="generator parameter file")
parser.add_argument("--test-metadata", type=str, help="dev data")
parser.add_argument("--output-dir", type=str, help="output dir")
parser.add_argument("--verbose", type=int, default=1, help="verbose")
args = parser.parse_args()
config = get_cfg_default()
if args.config:
config.merge_from_file(args.config)
print("========Args========")
print(yaml.safe_dump(vars(args)))
print("========Config========")
print(config)
print(
f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}"
)
generator = PWGGenerator(**config["generator_params"])
state_dict = paddle.load(args.params)
generator.set_state_dict(state_dict)
generator.remove_weight_norm()
generator.eval()
with jsonlines.open(args.test_metadata, 'r') as reader:
metadata = list(reader)
test_dataset = DataTable(
metadata,
fields=['utt_id', 'feats'],
converters={
'utt_id': None,
'feats': np.load,
})
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
for example in test_dataset:
utt_id = example['utt_id']
mel = example['feats']
mel = paddle.to_tensor(mel) # (T, C)
wav = generator.inference(c=mel)
wav = wav.numpy()
print(f"{utt_id}, mel: {mel.shape}, wave: {wav.shape}")
sf.write(output_dir / (utt_id + ".wav"), wav, samplerate=24000)

View File

@ -134,7 +134,8 @@ def train_sp(args, config):
parameters=generator.parameters(),
**config["generator_optimizer_params"])
lr_schedule_d = StepDecay(**config["discriminator_scheduler_params"])
gradient_clip_d = nn.ClipGradByGlobalNorm(config["discriminator_grad_norm"])
gradient_clip_d = nn.ClipGradByGlobalNorm(config[
"discriminator_grad_norm"])
optimizer_d = Adam(
learning_rate=lr_schedule_d,
grad_clip=gradient_clip_d,
@ -180,7 +181,6 @@ def train_sp(args, config):
},
dataloader=dev_dataloader,
lambda_adv=config.lambda_adv, )
trainer = Trainer(
updater,
stop_trigger=(config.train_max_steps, "iteration"),

View File

@ -519,7 +519,7 @@ class PWGGenerator(nn.Layer):
if c is not None:
c = paddle.transpose(c, [1, 0]).unsqueeze(0) # pseudo batch
c = nn.Pad1D(self.aux_context_window, mode='edge')(c)
c = nn.Pad1D(self.aux_context_window, mode='replicate')(c)
out = self.forward(x, c).squeeze(0).transpose([1, 0])
return out