Merge branch 'master' into 'master'

add docstring for Conv1D, Conv1DTranspose and Conv1DCell, remove unnecessary file

See merge request !44
This commit is contained in:
liuyibing01 2020-03-10 17:06:05 +08:00
commit 4329b581f3
2 changed files with 34 additions and 222 deletions

View File

@ -1,222 +0,0 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
import paddle
from paddle import fluid
import paddle.fluid.dygraph as dg
from .weight_norm import Conv2D, Conv2DTranspose
class Conv1D(dg.Layer):
"""
A convolution 1D block implemented with Conv2D. Form simplicity and
ensuring the output has the same length as the input, it does not allow
stride > 1.
"""
def __init__(self,
name_scope,
in_cahnnels,
num_filters,
filter_size=3,
dilation=1,
groups=None,
causal=False,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
dtype="float32"):
super(Conv1D, self).__init__(name_scope, dtype=dtype)
if causal:
padding = dilation * (filter_size - 1)
else:
padding = (dilation * (filter_size - 1)) // 2
self.in_channels = in_cahnnels
self.num_filters = num_filters
self.filter_size = filter_size
self.dilation = dilation
self.causal = causal
self.padding = padding
self.act = act
self.conv = Conv2D(
self.full_name(),
num_filters=num_filters,
filter_size=(1, filter_size),
stride=(1, 1),
dilation=(1, dilation),
padding=(0, padding),
groups=groups,
param_attr=param_attr,
bias_attr=bias_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
def forward(self, x):
"""
Args:
x (Variable): Shape(B, C_in, 1, T), the input, where C_in means
input channels.
Returns:
x (Variable): Shape(B, C_out, 1, T), the outputs, where C_out means
output channels (num_filters).
"""
x = self.conv(x)
if self.filter_size > 1:
if self.causal:
x = fluid.layers.slice(
x, axes=[3], starts=[0], ends=[-self.padding])
elif self.filter_size % 2 == 0:
x = fluid.layers.slice(x, axes=[3], starts=[0], ends=[-1])
return x
def start_new_sequence(self):
self.temp_weight = None
self.input_buffer = None
def add_input(self, x):
"""
Adding input for a time step and compute an output for a time step.
Args:
x (Variable): Shape(B, C_in, 1, T), the input, where C_in means
input channels, and T = 1.
Returns:
out (Variable): Shape(B, C_out, 1, T), the outputs, where C_out
means output channels (num_filters), and T = 1.
"""
if self.temp_weight is None:
self.temp_weight = self._reshaped_weight()
window_size = 1 + (self.filter_size - 1) * self.dilation
batch_size = x.shape[0]
in_channels = x.shape[1]
if self.filter_size > 1:
if self.input_buffer is None:
self.input_buffer = fluid.layers.fill_constant(
[batch_size, in_channels, 1, window_size - 1],
dtype=x.dtype,
value=0.0)
else:
self.input_buffer = self.input_buffer[:, :, :, 1:]
self.input_buffer = fluid.layers.concat(
[self.input_buffer, x], axis=3)
x = self.input_buffer
if self.dilation > 1:
if not hasattr(self, "indices"):
self.indices = dg.to_variable(
np.arange(0, window_size, self.dilation))
tmp = fluid.layers.transpose(
self.input_buffer, perm=[3, 1, 2, 0])
tmp = fluid.layers.gather(tmp, index=self.indices)
tmp = fluid.layers.transpose(tmp, perm=[3, 1, 2, 0])
x = tmp
inputs = fluid.layers.reshape(
x, shape=[batch_size, in_channels * 1 * self.filter_size])
out = fluid.layers.matmul(inputs, self.temp_weight, transpose_y=True)
out = fluid.layers.elementwise_add(out, self.conv._bias_param, axis=-1)
out = fluid.layers.reshape(out, out.shape + [1, 1])
out = self._helper.append_activation(out, act=self.act)
return out
def _reshaped_weight(self):
"""
Get the linearized weight of convolution filter, cause it is by nature
a matmul weight. And because the model uses weight norm, compute the
weight by weight_v * weight_g to make it faster.
Returns:
weight_matrix (Variable): Shape(C_out, C_in * 1 * kernel_size)
"""
shape = self.conv._filter_param_v.shape
matrix_shape = [shape[0], np.prod(shape[1:])]
weight_matrix = fluid.layers.reshape(
self.conv._filter_param_v, shape=matrix_shape)
weight_matrix = fluid.layers.elementwise_mul(
fluid.layers.l2_normalize(
weight_matrix, axis=1),
self.conv._filter_param_g,
axis=0)
return weight_matrix
class Conv1DTranspose(dg.Layer):
"""
A convolutional transpose 1D block implemented with convolutional transpose
2D. It does not ensure that the output is exactly expanded stride times in
time dimension.
"""
def __init__(self,
name_scope,
in_channels,
num_filters,
filter_size,
padding=0,
stride=1,
dilation=1,
groups=None,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
dtype="float32"):
super(Conv1DTranspose, self).__init__(name_scope, dtype=dtype)
self.in_channels = in_channels
self.num_filters = num_filters
self.filter_size = filter_size
self.padding = padding
self.stride = stride
self.dilation = dilation
self.groups = groups
self.conv_transpose = Conv2DTranspose(
self.full_name(),
num_filters,
filter_size=(1, filter_size),
padding=(0, padding),
stride=(1, stride),
dilation=(1, dilation),
groups=groups,
param_attr=param_attr,
bias_attr=bias_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
def forward(self, x):
"""
Argss:
x (Variable): Shape(B, C_in, 1, T_in), where C_in means the input
channels and T_in means the number of time steps of input.
Returns:
out (Variable): shape(B, C_out, 1, T_out), where C_out means the
output channels and T_out means the number of time steps of
input.
"""
return self.conv_transpose(x)

View File

@ -106,6 +106,14 @@ class Conv1D(dg.Conv2D):
dtype=dtype) dtype=dtype)
def forward(self, x): def forward(self, x):
"""Compute Conv1D by unsqueeze the input and squeeze the output.
Args:
x (Variable): shape(B, C_in, T_in), dtype float32, input of Conv1D.
Returns:
Variable: shape(B, C_out, T_out), dtype float32, output of Conv1D.
"""
x = F.unsqueeze(x, [2]) x = F.unsqueeze(x, [2])
x = super(Conv1D, self).forward(x) # maybe risky here x = super(Conv1D, self).forward(x) # maybe risky here
x = F.squeeze(x, [2]) x = F.squeeze(x, [2])
@ -141,6 +149,14 @@ class Conv1DTranspose(dg.Conv2DTranspose):
dtype=dtype) dtype=dtype)
def forward(self, x): def forward(self, x):
"""Compute Conv1DTranspose by unsqueeze the input and squeeze the output.
Args:
x (Variable): shape(B, C_in, T_in), dtype float32, input of Conv1DTranspose.
Returns:
Variable: shape(B, C_out, T_out), dtype float32, output of Conv1DTranspose.
"""
x = F.unsqueeze(x, [2]) x = F.unsqueeze(x, [2])
x = super(Conv1DTranspose, self).forward(x) # maybe risky here x = super(Conv1DTranspose, self).forward(x) # maybe risky here
x = F.squeeze(x, [2]) x = F.squeeze(x, [2])
@ -188,6 +204,14 @@ class Conv1DCell(Conv1D):
dtype=dtype) dtype=dtype)
def forward(self, x): def forward(self, x):
"""Compute Conv1D by unsqueeze the input and squeeze the output.
Args:
x (Variable): shape(B, C_in, T), dtype float32, input of Conv1D.
Returns:
Variable: shape(B, C_out, T), dtype float32, output of Conv1D.
"""
# it ensures that ouput time steps == input time steps # it ensures that ouput time steps == input time steps
time_steps = x.shape[-1] time_steps = x.shape[-1]
x = super(Conv1DCell, self).forward(x) x = super(Conv1DCell, self).forward(x)
@ -200,6 +224,8 @@ class Conv1DCell(Conv1D):
return self._receptive_field return self._receptive_field
def start_sequence(self): def start_sequence(self):
"""Prepare the Conv1DCell to generate a new sequence, this method should be called before calling add_input multiple times.
"""
if not self.causal: if not self.causal:
raise ValueError( raise ValueError(
"Only causal conv1d shell should use start sequence") "Only causal conv1d shell should use start sequence")
@ -211,6 +237,14 @@ class Conv1DCell(Conv1D):
self._reshaped_weight = F.reshape(self.weight, (self._num_filters, -1)) self._reshaped_weight = F.reshape(self.weight, (self._num_filters, -1))
def add_input(self, x_t): def add_input(self, x_t):
"""This method works similarily with forward but in a `step-in-step-out` fashion.
Args:
x (Variable): shape(B, C_in, T=1), dtype float32, input of Conv1D.
Returns:
Variable: shape(B, C_out, T=1), dtype float32, output of Conv1D.
"""
batch_size, c_in, _ = x_t.shape batch_size, c_in, _ = x_t.shape
if self._buffer is None: if self._buffer is None:
self._buffer = F.zeros( self._buffer = F.zeros(