Merge branch 'commit' into 'master'

modified data preprocessing and synthesis of transformer_tts and fastspeech

See merge request !62
This commit is contained in:
liuyibing01 2020-06-24 11:31:35 +08:00
commit 563d3bae74
16 changed files with 273 additions and 305 deletions

View File

@ -87,7 +87,7 @@ python train.py \
--use_gpu=1 \
--data=${DATAPATH} \
--alignments_path=${ALIGNMENTS_PATH} \
--output='./experiment' \
--output=${OUTPUTPATH} \
--config='configs/ljspeech.yaml' \
```
@ -105,7 +105,7 @@ python -m paddle.distributed.launch --selected_gpus=0,1,2,3 --log_dir ./mylog tr
--use_gpu=1 \
--data=${DATAPATH} \
--alignments_path=${ALIGNMENTS_PATH} \
--output='./experiment' \
--output=${OUTPUTPATH} \
--config='configs/ljspeech.yaml' \
```
@ -123,14 +123,13 @@ After training the FastSpeech, audio can be synthesized by running ``synthesis.p
python synthesis.py \
--use_gpu=1 \
--alpha=1.0 \
--checkpoint='./checkpoint/fastspeech/step-120000' \
--checkpoint=${CHECKPOINTPATH} \
--config='configs/ljspeech.yaml' \
--config_clarine='../clarinet/configs/config.yaml' \
--checkpoint_clarinet='../clarinet/checkpoint/step-500000' \
--output='./synthesis' \
--output=${OUTPUTPATH} \
--vocoder='griffin-lim' \
```
We use Clarinet to synthesis wav, so it necessary for you to prepare a pre-trained [Clarinet checkpoint](https://paddlespeech.bj.bcebos.com/Parakeet/clarinet_ljspeech_ckpt_1.0.zip).
We currently support two vocoders, Griffin-Lim algorithm and WaveFlow. You can set ``--vocoder`` to use one of them. If you want to use WaveFlow as your vocoder, you need to set ``--config_vocoder`` and ``--checkpoint_vocoder`` which are the path of the config and checkpoint of vocoder. You can download the pre-trained model of WaveFlow from [here](https://github.com/PaddlePaddle/Parakeet#vocoders).
Or you can run the script file directly.
@ -141,3 +140,5 @@ sh synthesis.sh
For more help on arguments
``python synthesis.py --help``.
Then you can find the synthesized audio files in ``${OUTPUTPATH}/samples``.

View File

@ -27,7 +27,6 @@ from collections import OrderedDict
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
from parakeet.models.transformer_tts.utils import *
from parakeet import audio
from parakeet.models.transformer_tts import TransformerTTS
from parakeet.models.fastspeech.utils import get_alignment
from parakeet.utils import io
@ -78,25 +77,6 @@ def alignments(args):
header=None,
quoting=csv.QUOTE_NONE,
names=["fname", "raw_text", "normalized_text"])
ljspeech_processor = audio.AudioProcessor(
sample_rate=cfg['audio']['sr'],
num_mels=cfg['audio']['num_mels'],
min_level_db=cfg['audio']['min_level_db'],
ref_level_db=cfg['audio']['ref_level_db'],
n_fft=cfg['audio']['n_fft'],
win_length=cfg['audio']['win_length'],
hop_length=cfg['audio']['hop_length'],
power=cfg['audio']['power'],
preemphasis=cfg['audio']['preemphasis'],
signal_norm=True,
symmetric_norm=False,
max_norm=1.,
mel_fmin=0,
mel_fmax=None,
clip_norm=True,
griffin_lim_iters=60,
do_trim_silence=False,
sound_norm=False)
pbar = tqdm(range(len(table)))
alignments = OrderedDict()
@ -107,11 +87,26 @@ def alignments(args):
text = fluid.layers.unsqueeze(dg.to_variable(text), [0])
pos_text = np.arange(1, text.shape[1] + 1)
pos_text = fluid.layers.unsqueeze(dg.to_variable(pos_text), [0])
wav = ljspeech_processor.load_wav(
os.path.join(args.data, 'wavs', fname + ".wav"))
mel_input = ljspeech_processor.melspectrogram(wav).astype(
np.float32)
mel_input = np.transpose(mel_input, axes=(1, 0))
# load
wav, _ = librosa.load(
str(os.path.join(args.data, 'wavs', fname + ".wav")))
spec = librosa.stft(
y=wav,
n_fft=cfg['audio']['n_fft'],
win_length=cfg['audio']['win_length'],
hop_length=cfg['audio']['hop_length'])
mag = np.abs(spec)
mel = librosa.filters.mel(sr=cfg['audio']['sr'],
n_fft=cfg['audio']['n_fft'],
n_mels=cfg['audio']['num_mels'],
fmin=cfg['audio']['fmin'],
fmax=cfg['audio']['fmax'])
mel = np.matmul(mel, mag)
mel = np.log(np.maximum(mel, 1e-5))
mel_input = np.transpose(mel, axes=(1, 0))
mel_input = fluid.layers.unsqueeze(dg.to_variable(mel_input), [0])
mel_lens = mel_input.shape[1]
@ -125,7 +120,7 @@ def alignments(args):
alignment, _ = get_alignment(attn_probs, mel_lens,
network_cfg['decoder_num_head'])
alignments[fname] = alignment
with open(args.output + '.txt', "wb") as f:
with open(args.output + '.pkl', "wb") as f:
pickle.dump(alignments, f)

View File

@ -1,10 +1,13 @@
audio:
num_mels: 80 #the number of mel bands when calculating mel spectrograms.
n_fft: 2048 #the number of fft components.
n_fft: 1024 #the number of fft components.
sr: 22050 #the sampling rate of audio data file.
hop_length: 256 #the number of samples to advance between frames.
win_length: 1024 #the length (width) of the window function.
preemphasis: 0.97
power: 1.2 #the power to raise before griffin-lim.
fmin: 0
fmax: 8000
network:
encoder_n_layer: 6 #the number of FFT Block in encoder.

View File

@ -42,12 +42,7 @@ class LJSpeechLoader:
LJSPEECH_ROOT = Path(data_path)
metadata = LJSpeechMetaData(LJSPEECH_ROOT, alignments_path)
transformer = LJSpeech(
sr=config['sr'],
n_fft=config['n_fft'],
num_mels=config['num_mels'],
win_length=config['win_length'],
hop_length=config['hop_length'])
transformer = LJSpeech(config)
dataset = TransformDataset(metadata, transformer)
dataset = CacheDataset(dataset)
@ -96,18 +91,16 @@ class LJSpeechMetaData(DatasetMixin):
class LJSpeech(object):
def __init__(self,
sr=22050,
n_fft=2048,
num_mels=80,
win_length=1024,
hop_length=256):
def __init__(self, cfg):
super(LJSpeech, self).__init__()
self.sr = sr
self.n_fft = n_fft
self.num_mels = num_mels
self.win_length = win_length
self.hop_length = hop_length
self.sr = cfg['sr']
self.n_fft = cfg['n_fft']
self.num_mels = cfg['num_mels']
self.win_length = cfg['win_length']
self.hop_length = cfg['hop_length']
self.preemphasis = cfg['preemphasis']
self.fmin = cfg['fmin']
self.fmax = cfg['fmax']
def __call__(self, metadatum):
"""All the code for generating an Example from a metadatum. If you want a
@ -125,7 +118,11 @@ class LJSpeech(object):
win_length=self.win_length,
hop_length=self.hop_length)
mag = np.abs(spec)
mel = librosa.filters.mel(self.sr, self.n_fft, n_mels=self.num_mels)
mel = librosa.filters.mel(self.sr,
self.n_fft,
n_mels=self.num_mels,
fmin=self.fmin,
fmax=self.fmax)
mel = np.matmul(mel, mag)
mel = np.log(np.maximum(mel, 1e-5))
phonemes = np.array(

View File

@ -28,6 +28,8 @@ from parakeet.models.fastspeech.fastspeech import FastSpeech
from parakeet.models.transformer_tts.utils import *
from parakeet.models.wavenet import WaveNet, UpsampleNet
from parakeet.models.clarinet import STFT, Clarinet, ParallelWaveNet
from parakeet.modules import weight_norm
from parakeet.models.waveflow import WaveFlowModule
from parakeet.utils.layer_tools import freeze
from parakeet.utils import io
@ -35,7 +37,13 @@ from parakeet.utils import io
def add_config_options_to_parser(parser):
parser.add_argument("--config", type=str, help="path of the config file")
parser.add_argument(
"--config_clarinet", type=str, help="path of the clarinet config file")
"--vocoder",
type=str,
default="griffin-lim",
choices=['griffin-lim', 'waveflow'],
help="vocoder method")
parser.add_argument(
"--config_vocoder", type=str, help="path of the vocoder config file")
parser.add_argument("--use_gpu", type=int, default=0, help="device to use")
parser.add_argument(
"--alpha",
@ -45,11 +53,11 @@ def add_config_options_to_parser(parser):
)
parser.add_argument(
"--checkpoint", type=str, help="fastspeech checkpoint to synthesis")
"--checkpoint", type=str, help="fastspeech checkpoint for synthesis")
parser.add_argument(
"--checkpoint_clarinet",
"--checkpoint_vocoder",
type=str,
help="clarinet checkpoint to synthesis")
help="vocoder checkpoint for synthesis")
parser.add_argument(
"--output",
@ -88,110 +96,68 @@ def synthesis(text_input, args):
_, mel_output_postnet = model(text, pos_text, alpha=args.alpha)
result = np.exp(mel_output_postnet.numpy())
mel_output_postnet = fluid.layers.transpose(
fluid.layers.squeeze(mel_output_postnet, [0]), [1, 0])
mel_output_postnet = np.exp(mel_output_postnet.numpy())
basis = librosa.filters.mel(cfg['audio']['sr'], cfg['audio']['n_fft'],
cfg['audio']['num_mels'])
inv_basis = np.linalg.pinv(basis)
spec = np.maximum(1e-10, np.dot(inv_basis, mel_output_postnet))
if args.vocoder == 'griffin-lim':
#synthesis use griffin-lim
wav = synthesis_with_griffinlim(mel_output_postnet, cfg['audio'])
elif args.vocoder == 'waveflow':
wav = synthesis_with_waveflow(mel_output_postnet, args,
args.checkpoint_vocoder, place)
else:
print(
'vocoder error, we only support griffinlim and waveflow, but recevied %s.'
% args.vocoder)
# synthesis use clarinet
wav_clarinet = synthesis_with_clarinet(
args.config_clarinet, args.checkpoint_clarinet, result, place)
writer.add_audio(text_input + '(clarinet)', wav_clarinet, 0,
writer.add_audio(text_input + '(' + args.vocoder + ')', wav, 0,
cfg['audio']['sr'])
if not os.path.exists(os.path.join(args.output, 'samples')):
os.mkdir(os.path.join(args.output, 'samples'))
write(
os.path.join(os.path.join(args.output, 'samples'), 'clarinet.wav'),
cfg['audio']['sr'], wav_clarinet)
#synthesis use griffin-lim
wav = librosa.core.griffinlim(
spec**cfg['audio']['power'],
hop_length=cfg['audio']['hop_length'],
win_length=cfg['audio']['win_length'])
writer.add_audio(text_input + '(griffin-lim)', wav, 0, cfg['audio']['sr'])
write(
os.path.join(
os.path.join(args.output, 'samples'), 'grinffin-lim.wav'),
os.path.join(args.output, 'samples'), args.vocoder + '.wav'),
cfg['audio']['sr'], wav)
print("Synthesis completed !!!")
writer.close()
def synthesis_with_clarinet(config_path, checkpoint, mel_spectrogram, place):
with open(config_path, 'rt') as f:
config = yaml.safe_load(f)
def synthesis_with_griffinlim(mel_output, cfg):
mel_output = fluid.layers.transpose(
fluid.layers.squeeze(mel_output, [0]), [1, 0])
mel_output = np.exp(mel_output.numpy())
basis = librosa.filters.mel(cfg['sr'],
cfg['n_fft'],
cfg['num_mels'],
fmin=cfg['fmin'],
fmax=cfg['fmax'])
inv_basis = np.linalg.pinv(basis)
spec = np.maximum(1e-10, np.dot(inv_basis, mel_output))
data_config = config["data"]
n_mels = data_config["n_mels"]
wav = librosa.core.griffinlim(
spec**cfg['power'],
hop_length=cfg['hop_length'],
win_length=cfg['win_length'])
teacher_config = config["teacher"]
n_loop = teacher_config["n_loop"]
n_layer = teacher_config["n_layer"]
filter_size = teacher_config["filter_size"]
return wav
# only batch=1 for validation is enabled
with dg.guard(place):
# conditioner(upsampling net)
conditioner_config = config["conditioner"]
upsampling_factors = conditioner_config["upsampling_factors"]
upsample_net = UpsampleNet(upscale_factors=upsampling_factors)
freeze(upsample_net)
def synthesis_with_waveflow(mel_output, args, checkpoint, place):
residual_channels = teacher_config["residual_channels"]
loss_type = teacher_config["loss_type"]
output_dim = teacher_config["output_dim"]
log_scale_min = teacher_config["log_scale_min"]
assert loss_type == "mog" and output_dim == 3, \
"the teacher wavenet should be a wavenet with single gaussian output"
fluid.enable_dygraph(place)
args.config = args.config_vocoder
args.use_fp16 = False
config = io.add_yaml_config_to_args(args)
teacher = WaveNet(n_loop, n_layer, residual_channels, output_dim,
n_mels, filter_size, loss_type, log_scale_min)
# load & freeze upsample_net & teacher
freeze(teacher)
mel_spectrogram = fluid.layers.transpose(mel_output, [0, 2, 1])
student_config = config["student"]
n_loops = student_config["n_loops"]
n_layers = student_config["n_layers"]
student_residual_channels = student_config["residual_channels"]
student_filter_size = student_config["filter_size"]
student_log_scale_min = student_config["log_scale_min"]
student = ParallelWaveNet(n_loops, n_layers, student_residual_channels,
n_mels, student_filter_size)
# Build model.
waveflow = WaveFlowModule(config)
io.load_parameters(model=waveflow, checkpoint_path=checkpoint)
for layer in waveflow.sublayers():
if isinstance(layer, weight_norm.WeightNormWrapper):
layer.remove_weight_norm()
stft_config = config["stft"]
stft = STFT(
n_fft=stft_config["n_fft"],
hop_length=stft_config["hop_length"],
win_length=stft_config["win_length"])
lmd = config["loss"]["lmd"]
model = Clarinet(upsample_net, teacher, student, stft,
student_log_scale_min, lmd)
io.load_parameters(model=model, checkpoint_path=checkpoint)
if not os.path.exists(args.output):
os.makedirs(args.output)
model.eval()
# Rescale mel_spectrogram.
min_level, ref_level = 1e-5, 20 # hard code it
mel_spectrogram = 20 * np.log10(np.maximum(min_level, mel_spectrogram))
mel_spectrogram = mel_spectrogram - ref_level
mel_spectrogram = np.clip((mel_spectrogram + 100) / 100, 0, 1)
mel_spectrogram = dg.to_variable(mel_spectrogram)
mel_spectrogram = fluid.layers.transpose(mel_spectrogram, [0, 2, 1])
wav_var = model.synthesis(mel_spectrogram)
wav_np = wav_var.numpy()[0]
return wav_np
# Run model inference.
wav = waveflow.synthesize(mel_spectrogram, sigma=config.sigma)
return wav.numpy()[0]
if __name__ == '__main__':
@ -199,5 +165,6 @@ if __name__ == '__main__':
add_config_options_to_parser(parser)
args = parser.parse_args()
pprint(vars(args))
synthesis("Simple as this proposition is, it is necessary to be stated,",
args)
synthesis(
"Don't argue with the people of strong determination, because they may change the fact!",
args)

View File

@ -1,13 +1,17 @@
# train model
CUDA_VISIBLE_DEVICES=0 \
python -u synthesis.py \
--use_gpu=1 \
--alpha=1.0 \
--checkpoint='./checkpoint/fastspeech/step-120000' \
--config='configs/ljspeech.yaml' \
--config_clarine='../clarinet/configs/config.yaml' \
--checkpoint_clarinet='../clarinet/checkpoint/step-500000' \
--checkpoint='./fastspeech_ljspeech_ckpt_1.0/fastspeech/step-162000' \
--config='fastspeech_ljspeech_ckpt_1.0/ljspeech.yaml' \
--output='./synthesis' \
--vocoder='waveflow' \
--config_vocoder='./waveflow_res128_ljspeech_ckpt_1.0/waveflow_ljspeech.yaml' \
--checkpoint_vocoder='./waveflow_res128_ljspeech_ckpt_1.0/step-2000000' \
if [ $? -ne 0 ]; then
echo "Failed in synthesis!"

View File

@ -3,7 +3,7 @@ export CUDA_VISIBLE_DEVICES=0
python -u train.py \
--use_gpu=1 \
--data='../../dataset/LJSpeech-1.1' \
--alignments_path='./alignments/alignments.txt' \
--alignments_path='./alignments/alignments.pkl' \
--output='./experiment' \
--config='configs/ljspeech.yaml' \
#--checkpoint='./checkpoint/fastspeech/step-120000' \

View File

@ -56,7 +56,7 @@ TransformerTTS model can be trained by running ``train_transformer.py``.
python train_transformer.py \
--use_gpu=1 \
--data=${DATAPATH} \
--output='./experiment' \
--output=${OUTPUTPATH} \
--config='configs/ljspeech.yaml' \
```
@ -73,7 +73,7 @@ CUDA_VISIBLE_DEVICES=0,1,2,3
python -m paddle.distributed.launch --selected_gpus=0,1,2,3 --log_dir ./mylog train_transformer.py \
--use_gpu=1 \
--data=${DATAPATH} \
--output='./experiment' \
--output=${OUTPUTPATH} \
--config='configs/ljspeech.yaml' \
```
@ -85,61 +85,28 @@ For more help on arguments
``python train_transformer.py --help``.
## Train Vocoder
Vocoder model can be trained by running ``train_vocoder.py``.
```bash
python train_vocoder.py \
--use_gpu=1 \
--data=${DATAPATH} \
--output='./vocoder' \
--config='configs/ljspeech.yaml' \
```
Or you can run the script file directly.
```bash
sh train_vocoder.sh
```
If you want to train on multiple GPUs, you must start training in the following way.
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3
python -m paddle.distributed.launch --selected_gpus=0,1,2,3 --log_dir ./mylog train_vocoder.py \
--use_gpu=1 \
--data=${DATAPATH} \
--output='./vocoder' \
--config='configs/ljspeech.yaml' \
```
If you wish to resume from an existing model, See [Saving-&-Loading](#Saving-&-Loading) for details of checkpoint loading.
For more help on arguments
``python train_vocoder.py --help``.
## Synthesis
After training the TransformerTTS and vocoder model, audio can be synthesized by running ``synthesis.py``.
After training the TransformerTTS, audio can be synthesized by running ``synthesis.py``.
```bash
python synthesis.py \
--max_len=300 \
--use_gpu=1 \
--output='./synthesis' \
--use_gpu=0 \
--output=${OUTPUTPATH} \
--config='configs/ljspeech.yaml' \
--checkpoint_transformer='./checkpoint/transformer/step-120000' \
--checkpoint_vocoder='./checkpoint/vocoder/step-100000' \
--checkpoint_transformer=${CHECKPOINTPATH} \
--vocoder='griffin-lim' \
```
We currently support two vocoders, Griffin-Lim algorithm and WaveFlow. You can set ``--vocoder`` to use one of them. If you want to use WaveFlow as your vocoder, you need to set ``--config_vocoder`` and ``--checkpoint_vocoder`` which are the path of the config and checkpoint of vocoder. You can download the pre-trained model of WaveFlow from [here](https://github.com/PaddlePaddle/Parakeet#vocoders).
Or you can run the script file directly.
```bash
sh synthesis.sh
```
For more help on arguments
``python synthesis.py --help``.
Then you can find the synthesized audio files in ``${OUTPUTPATH}/samples``.

View File

@ -1,13 +1,13 @@
audio:
num_mels: 80
n_fft: 2048
n_fft: 1024
sr: 22050
preemphasis: 0.97
hop_length: 256 #275
win_length: 1024 #1102
hop_length: 256
win_length: 1024
power: 1.2
min_level_db: -100
ref_level_db: 20
fmin: 0
fmax: 8000
network:
hidden_size: 256
@ -17,7 +17,7 @@ network:
decoder_num_head: 4
decoder_n_layers: 3
outputs_per_step: 1
stop_token: False
stop_loss_weight: 8
vocoder:
hidden_size: 256

View File

@ -19,7 +19,6 @@ import csv
from paddle import fluid
from parakeet import g2p
from parakeet import audio
from parakeet.data.sampler import *
from parakeet.data.datacargo import DataCargo
from parakeet.data.batch import TextIDBatcher, SpecBatcher
@ -98,25 +97,14 @@ class LJSpeech(object):
def __init__(self, config):
super(LJSpeech, self).__init__()
self.config = config
self._ljspeech_processor = audio.AudioProcessor(
sample_rate=config['sr'],
num_mels=config['num_mels'],
min_level_db=config['min_level_db'],
ref_level_db=config['ref_level_db'],
n_fft=config['n_fft'],
win_length=config['win_length'],
hop_length=config['hop_length'],
power=config['power'],
preemphasis=config['preemphasis'],
signal_norm=True,
symmetric_norm=False,
max_norm=1.,
mel_fmin=0,
mel_fmax=None,
clip_norm=True,
griffin_lim_iters=60,
do_trim_silence=False,
sound_norm=False)
self.sr = config['sr']
self.n_mels = config['num_mels']
self.preemphasis = config['preemphasis']
self.n_fft = config['n_fft']
self.win_length = config['win_length']
self.hop_length = config['hop_length']
self.fmin = config['fmin']
self.fmax = config['fmax']
def __call__(self, metadatum):
"""All the code for generating an Example from a metadatum. If you want a
@ -127,14 +115,26 @@ class LJSpeech(object):
"""
fname, raw_text, normalized_text = metadatum
# load -> trim -> preemphasis -> stft -> magnitude -> mel_scale -> logscale -> normalize
wav = self._ljspeech_processor.load_wav(str(fname))
mag = self._ljspeech_processor.spectrogram(wav).astype(np.float32)
mel = self._ljspeech_processor.melspectrogram(wav).astype(np.float32)
phonemes = np.array(
# load
wav, _ = librosa.load(str(fname))
spec = librosa.stft(
y=wav,
n_fft=self.n_fft,
win_length=self.win_length,
hop_length=self.hop_length)
mag = np.abs(spec)
mel = librosa.filters.mel(sr=self.sr,
n_fft=self.n_fft,
n_mels=self.n_mels,
fmin=self.fmin,
fmax=self.fmax)
mel = np.matmul(mel, mag)
mel = np.log(np.maximum(mel, 1e-5))
characters = np.array(
g2p.en.text_to_sequence(normalized_text), dtype=np.int64)
return (mag, mel, phonemes
) # maybe we need to implement it as a map in the future
return (mag, mel, characters)
def batch_examples(batch):
@ -144,6 +144,7 @@ def batch_examples(batch):
text_lens = []
pos_texts = []
pos_mels = []
stop_tokens = []
for data in batch:
_, mel, text = data
mel_inputs.append(
@ -155,6 +156,8 @@ def batch_examples(batch):
pos_mels.append(np.arange(1, mel.shape[1] + 1))
mels.append(mel)
texts.append(text)
stop_token = np.append(np.zeros([mel.shape[1] - 1], np.float32), 1.0)
stop_tokens.append(stop_token)
# Sort by text_len in descending order
texts = [
@ -182,18 +185,24 @@ def batch_examples(batch):
for i, _ in sorted(
zip(pos_mels, text_lens), key=lambda x: x[1], reverse=True)
]
stop_tokens = [
i
for i, _ in sorted(
zip(stop_tokens, text_lens), key=lambda x: x[1], reverse=True)
]
text_lens = sorted(text_lens, reverse=True)
# Pad sequence with largest len of the batch
texts = TextIDBatcher(pad_id=0)(texts) #(B, T)
pos_texts = TextIDBatcher(pad_id=0)(pos_texts) #(B,T)
pos_mels = TextIDBatcher(pad_id=0)(pos_mels) #(B,T)
stop_tokens = TextIDBatcher(pad_id=1, dtype=np.float32)(pos_mels)
mels = np.transpose(
SpecBatcher(pad_value=0.)(mels), axes=(0, 2, 1)) #(B,T,num_mels)
mel_inputs = np.transpose(
SpecBatcher(pad_value=0.)(mel_inputs), axes=(0, 2, 1)) #(B,T,num_mels)
return (texts, mels, mel_inputs, pos_texts, pos_mels)
return (texts, mels, mel_inputs, pos_texts, pos_mels, stop_tokens)
def batch_examples_vocoder(batch):

View File

@ -25,29 +25,43 @@ import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
from parakeet.g2p.en import text_to_sequence
from parakeet.models.transformer_tts.utils import *
from parakeet import audio
from parakeet.models.transformer_tts import Vocoder
from parakeet.models.transformer_tts import TransformerTTS
from parakeet.models.waveflow import WaveFlowModule
from parakeet.modules.weight_norm import WeightNormWrapper
from parakeet.utils import io
def add_config_options_to_parser(parser):
parser.add_argument("--config", type=str, help="path of the config file")
parser.add_argument("--use_gpu", type=int, default=0, help="device to use")
parser.add_argument(
"--stop_threshold",
type=float,
default=0.5,
help="The threshold of stop token which indicates the time step should stop generate spectrum or not."
)
parser.add_argument(
"--max_len",
type=int,
default=200,
default=1000,
help="The max length of audio when synthsis.")
parser.add_argument(
"--checkpoint_transformer",
type=str,
help="transformer_tts checkpoint to synthesis")
help="transformer_tts checkpoint for synthesis")
parser.add_argument(
"--vocoder",
type=str,
default="griffin-lim",
choices=['griffin-lim', 'waveflow'],
help="vocoder method")
parser.add_argument(
"--config_vocoder", type=str, help="path of the vocoder config file")
parser.add_argument(
"--checkpoint_vocoder",
type=str,
help="vocoder checkpoint to synthesis")
help="vocoder checkpoint for synthesis")
parser.add_argument(
"--output",
@ -82,14 +96,6 @@ def synthesis(text_input, args):
model=model, checkpoint_path=args.checkpoint_transformer)
model.eval()
with fluid.unique_name.guard():
model_vocoder = Vocoder(
cfg['train']['batch_size'], cfg['vocoder']['hidden_size'],
cfg['audio']['num_mels'], cfg['audio']['n_fft'])
# Load parameters.
global_step = io.load_parameters(
model=model_vocoder, checkpoint_path=args.checkpoint_vocoder)
model_vocoder.eval()
# init input
text = np.asarray(text_to_sequence(text_input))
text = fluid.layers.unsqueeze(dg.to_variable(text).astype(np.int64), [0])
@ -98,42 +104,16 @@ def synthesis(text_input, args):
pos_text = fluid.layers.unsqueeze(
dg.to_variable(pos_text).astype(np.int64), [0])
pbar = tqdm(range(args.max_len))
for i in pbar:
for i in range(args.max_len):
pos_mel = np.arange(1, mel_input.shape[1] + 1)
pos_mel = fluid.layers.unsqueeze(
dg.to_variable(pos_mel).astype(np.int64), [0])
mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(
text, mel_input, pos_text, pos_mel)
if stop_preds.numpy()[0, -1] > args.stop_threshold:
break
mel_input = fluid.layers.concat(
[mel_input, postnet_pred[:, -1:, :]], axis=1)
mag_pred = model_vocoder(postnet_pred)
_ljspeech_processor = audio.AudioProcessor(
sample_rate=cfg['audio']['sr'],
num_mels=cfg['audio']['num_mels'],
min_level_db=cfg['audio']['min_level_db'],
ref_level_db=cfg['audio']['ref_level_db'],
n_fft=cfg['audio']['n_fft'],
win_length=cfg['audio']['win_length'],
hop_length=cfg['audio']['hop_length'],
power=cfg['audio']['power'],
preemphasis=cfg['audio']['preemphasis'],
signal_norm=True,
symmetric_norm=False,
max_norm=1.,
mel_fmin=0,
mel_fmax=None,
clip_norm=True,
griffin_lim_iters=60,
do_trim_silence=False,
sound_norm=False)
# synthesis with cbhg
wav = _ljspeech_processor.inv_spectrogram(
fluid.layers.transpose(fluid.layers.squeeze(mag_pred, [0]), [1, 0])
.numpy())
global_step = 0
for i, prob in enumerate(attn_probs):
for j in range(4):
@ -144,32 +124,79 @@ def synthesis(text_input, args):
i * 4 + j,
dataformats="HWC")
writer.add_audio(text_input + '(cbhg)', wav, 0, cfg['audio']['sr'])
if args.vocoder == 'griffin-lim':
#synthesis use griffin-lim
wav = synthesis_with_griffinlim(postnet_pred, cfg['audio'])
elif args.vocoder == 'waveflow':
# synthesis use waveflow
wav = synthesis_with_waveflow(postnet_pred, args,
args.checkpoint_vocoder, place)
else:
print(
'vocoder error, we only support griffinlim and waveflow, but recevied %s.'
% args.vocoder)
writer.add_audio(text_input + '(' + args.vocoder + ')', wav, 0,
cfg['audio']['sr'])
if not os.path.exists(os.path.join(args.output, 'samples')):
os.mkdir(os.path.join(args.output, 'samples'))
write(
os.path.join(os.path.join(args.output, 'samples'), 'cbhg.wav'),
cfg['audio']['sr'], wav)
# synthesis with griffin-lim
wav = _ljspeech_processor.inv_melspectrogram(
fluid.layers.transpose(
fluid.layers.squeeze(postnet_pred, [0]), [1, 0]).numpy())
writer.add_audio(text_input + '(griffin)', wav, 0, cfg['audio']['sr'])
write(
os.path.join(os.path.join(args.output, 'samples'), 'griffin.wav'),
os.path.join(
os.path.join(args.output, 'samples'), args.vocoder + '.wav'),
cfg['audio']['sr'], wav)
print("Synthesis completed !!!")
writer.close()
def synthesis_with_griffinlim(mel_output, cfg):
# synthesis with griffin-lim
mel_output = fluid.layers.transpose(
fluid.layers.squeeze(mel_output, [0]), [1, 0])
mel_output = np.exp(mel_output.numpy())
basis = librosa.filters.mel(cfg['sr'],
cfg['n_fft'],
cfg['num_mels'],
fmin=cfg['fmin'],
fmax=cfg['fmax'])
inv_basis = np.linalg.pinv(basis)
spec = np.maximum(1e-10, np.dot(inv_basis, mel_output))
wav = librosa.core.griffinlim(
spec**cfg['power'],
hop_length=cfg['hop_length'],
win_length=cfg['win_length'])
return wav
def synthesis_with_waveflow(mel_output, args, checkpoint, place):
fluid.enable_dygraph(place)
args.config = args.config_vocoder
args.use_fp16 = False
config = io.add_yaml_config_to_args(args)
mel_spectrogram = fluid.layers.transpose(
fluid.layers.squeeze(mel_output, [0]), [1, 0])
mel_spectrogram = fluid.layers.unsqueeze(mel_spectrogram, [0])
# Build model.
waveflow = WaveFlowModule(config)
io.load_parameters(model=waveflow, checkpoint_path=checkpoint)
for layer in waveflow.sublayers():
if isinstance(layer, WeightNormWrapper):
layer.remove_weight_norm()
# Run model inference.
wav = waveflow.synthesize(mel_spectrogram, sigma=config.sigma)
return wav.numpy()[0]
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Synthesis model")
add_config_options_to_parser(parser)
args = parser.parse_args()
# Print the whole config setting.
pprint(vars(args))
synthesis("Parakeet stands for Paddle PARAllel text-to-speech toolkit.",
args)
synthesis(
"Life was like a box of chocolates, you never know what you're gonna get.",
args)

View File

@ -2,12 +2,13 @@
# train model
CUDA_VISIBLE_DEVICES=0 \
python -u synthesis.py \
--max_len=300 \
--use_gpu=1 \
--use_gpu=0 \
--output='./synthesis' \
--config='configs/ljspeech.yaml' \
--checkpoint_transformer='./checkpoint/transformer/step-120000' \
--checkpoint_vocoder='./checkpoint/vocoder/step-100000' \
--config='transformer_tts_ljspeech_ckpt_1.0/ljspeech.yaml' \
--checkpoint_transformer='./transformer_tts_ljspeech_ckpt_1.0/step-120000' \
--vocoder='waveflow' \
--config_vocoder='./waveflow_res128_ljspeech_ckpt_1.0/waveflow_ljspeech.yaml' \
--checkpoint_vocoder='./waveflow_res128_ljspeech_ckpt_1.0/step-2000000' \
if [ $? -ne 0 ]; then
echo "Failed in training!"

View File

@ -115,7 +115,7 @@ def main(args):
iterator = iter(tqdm(reader))
batch = next(iterator)
character, mel, mel_input, pos_text, pos_mel = batch
character, mel, mel_input, pos_text, pos_mel, stop_tokens = batch
mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(
character, mel_input, pos_text, pos_mel)
@ -126,11 +126,9 @@ def main(args):
layers.abs(layers.elementwise_sub(postnet_pred, mel)))
loss = mel_loss + post_mel_loss
# Note: When used stop token loss the learning did not work.
if cfg['network']['stop_token']:
label = (pos_mel == 0).astype(np.float32)
stop_loss = cross_entropy(stop_preds, label)
loss = loss + stop_loss
stop_loss = cross_entropy(
stop_preds, stop_tokens, weight=cfg['network']['stop_loss_weight'])
loss = loss + stop_loss
if local_rank == 0:
writer.add_scalars('training_loss', {
@ -138,8 +136,7 @@ def main(args):
'post_mel_loss': post_mel_loss.numpy()
}, global_step)
if cfg['network']['stop_token']:
writer.add_scalar('stop_loss', stop_loss.numpy(), global_step)
writer.add_scalar('stop_loss', stop_loss.numpy(), global_step)
if parallel:
writer.add_scalars('alphas', {

View File

@ -98,7 +98,7 @@ def main(args):
local_rank,
is_vocoder=True).reader()
for epoch in range(cfg['train']['max_epochs']):
for epoch in range(cfg['train']['max_iteration']):
pbar = tqdm(reader)
for i, data in enumerate(pbar):
pbar.set_description('Processing at epoch %d' % epoch)

View File

@ -37,13 +37,12 @@ class LengthRegulator(dg.Layer):
filter_size=filter_size,
dropout=dropout)
def LR(self, x, duration_predictor_output, alpha=1.0):
def LR(self, x, duration_predictor_output):
output = []
batch_size = x.shape[0]
for i in range(batch_size):
output.append(
self.expand(x[i:i + 1], duration_predictor_output[i:i + 1],
alpha))
self.expand(x[i:i + 1], duration_predictor_output[i:i + 1]))
output = self.pad(output)
return output
@ -58,7 +57,7 @@ class LengthRegulator(dg.Layer):
out_padded = layers.stack(out_list)
return out_padded
def expand(self, batch, predicted, alpha):
def expand(self, batch, predicted):
out = []
time_steps = batch.shape[1]
fertilities = predicted.numpy()
@ -92,8 +91,9 @@ class LengthRegulator(dg.Layer):
output = self.LR(x, target)
return output, duration_predictor_output
else:
duration_predictor_output = layers.round(duration_predictor_output)
output = self.LR(x, duration_predictor_output, alpha)
duration_predictor_output = duration_predictor_output * alpha
duration_predictor_output = layers.ceil(duration_predictor_output)
output = self.LR(x, duration_predictor_output)
mel_pos = dg.to_variable(np.arange(1, output.shape[1] + 1)).astype(
np.int64)
mel_pos = layers.unsqueeze(mel_pos, [0])

View File

@ -93,9 +93,9 @@ def guided_attention(N, T, g=0.2):
return W
def cross_entropy(input, label, position_weight=1.0, epsilon=1e-30):
def cross_entropy(input, label, weight=1.0, epsilon=1e-30):
output = -1 * label * layers.log(input + epsilon) - (
1 - label) * layers.log(1 - input + epsilon)
output = output * (label * (position_weight - 1) + 1)
output = output * (label * (weight - 1) + 1)
return layers.reduce_sum(output, dim=[0, 1])
return layers.reduce_mean(output, dim=[0, 1])