add use_mfa example
This commit is contained in:
parent
d96e2828b8
commit
577c3b4f10
|
@ -0,0 +1,48 @@
|
||||||
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
from collections import OrderedDict
|
||||||
|
from pathlib import Path
|
||||||
|
import logging
|
||||||
|
|
||||||
|
|
||||||
|
def detect_oov(corpus_dir, lexicon_path, transcription_pattern="*.lab"):
|
||||||
|
corpus_dir = Path(corpus_dir)
|
||||||
|
|
||||||
|
lexicon = OrderedDict()
|
||||||
|
with open(lexicon_path, 'rt') as f:
|
||||||
|
for line in f:
|
||||||
|
syllable, phonemes = line.split(maxsplit=1)
|
||||||
|
lexicon[syllable] = phonemes
|
||||||
|
|
||||||
|
for fp in corpus_dir.glob(transcription_pattern):
|
||||||
|
syllables = fp.read_text().strip().split()
|
||||||
|
for s in syllables:
|
||||||
|
if s not in lexicon:
|
||||||
|
logging.warning(f"{fp.relative_to(corpus_dir)} has OOV {s} .")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description="detect oov in a corpus given a lexicon")
|
||||||
|
parser.add_argument(
|
||||||
|
"corpus_dir", type=str, help="corpus dir for MFA alignment.")
|
||||||
|
parser.add_argument("lexicon_path", type=str, help="dictionary to use.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--pattern", type=str, default="*.lab", help="dictionary to use.")
|
||||||
|
args = parser.parse_args()
|
||||||
|
print(args)
|
||||||
|
|
||||||
|
detect_oov(args.corpus_dir, args.lexicon_path, args.pattern)
|
|
@ -0,0 +1,176 @@
|
||||||
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import re
|
||||||
|
import argparse
|
||||||
|
from collections import OrderedDict
|
||||||
|
|
||||||
|
INITIALS = [
|
||||||
|
'b', 'p', 'm', 'f', 'd', 't', 'n', 'l', 'g', 'k', 'h', 'zh', 'ch', 'sh',
|
||||||
|
'r', 'z', 'c', 's', 'j', 'q', 'x'
|
||||||
|
]
|
||||||
|
|
||||||
|
FINALS = [
|
||||||
|
'a', 'ai', 'ao', 'an', 'ang', 'e', 'er', 'ei', 'en', 'eng', 'o', 'ou',
|
||||||
|
'ong', 'ii', 'iii', 'i', 'ia', 'iao', 'ian', 'iang', 'ie', 'io', 'iou',
|
||||||
|
'iong', 'in', 'ing', 'u', 'ua', 'uai', 'uan', 'uang', 'uei', 'uo', 'uen',
|
||||||
|
'ueng', 'v', 've', 'van', 'vn'
|
||||||
|
]
|
||||||
|
|
||||||
|
SPECIALS = ['sil', 'sp']
|
||||||
|
|
||||||
|
|
||||||
|
def rule(C, V, R, T):
|
||||||
|
|
||||||
|
# 不可拼的音节, ii 只能和 z, c, s 拼
|
||||||
|
if V in ["ii"] and (C not in ['z', 'c', 's']):
|
||||||
|
return
|
||||||
|
# iii 只能和 zh, ch, sh, r 拼
|
||||||
|
if V in ['iii'] and (C not in ['zh', 'ch', 'sh', 'r']):
|
||||||
|
return
|
||||||
|
|
||||||
|
# 齐齿呼或者撮口呼不能和 f, g, k, h, zh, ch, sh, r, z, c, s
|
||||||
|
if (V not in ['ii', 'iii']) and V[0] in ['i', 'v'] and (
|
||||||
|
C in ['f', 'g', 'k', 'h', 'zh', 'ch', 'sh', 'r', 'z', 'c', 's']):
|
||||||
|
return
|
||||||
|
|
||||||
|
# 撮口呼只能和 j, q, x l, n 拼
|
||||||
|
if V.startswith("v"):
|
||||||
|
# v, ve 只能和 j ,q , x, n, l 拼
|
||||||
|
if V in ['v', 've']:
|
||||||
|
if C not in ['j', 'q', 'x', 'n', 'l', '']:
|
||||||
|
return
|
||||||
|
# 其他只能和 j, q, x 拼
|
||||||
|
else:
|
||||||
|
if C not in ['j', 'q', 'x', '']:
|
||||||
|
return
|
||||||
|
|
||||||
|
# j, q, x 只能和齐齿呼或者撮口呼拼
|
||||||
|
if (C in ['j', 'q', 'x']) and not (
|
||||||
|
(V not in ['ii', 'iii']) and V[0] in ['i', 'v']):
|
||||||
|
return
|
||||||
|
|
||||||
|
# b, p ,m, f 不能和合口呼拼,除了 u 之外
|
||||||
|
# bm p, m, f 不能和撮口呼拼
|
||||||
|
if (C in ['b', 'p', 'm', 'f']) and ((V[0] in ['u', 'v'] and V != "u") or
|
||||||
|
V == 'ong'):
|
||||||
|
return
|
||||||
|
|
||||||
|
# ua, uai, uang 不能和 d, t, n, l, r, z, c, s 拼
|
||||||
|
if V in ['ua', 'uai', 'uang'
|
||||||
|
] and C in ['d', 't', 'n', 'l', 'r', 'z', 'c', 's']:
|
||||||
|
return
|
||||||
|
|
||||||
|
# sh 和 ong 不能拼
|
||||||
|
if V == 'ong' and C in ['sh']:
|
||||||
|
return
|
||||||
|
|
||||||
|
# o 和 gkh, zh ch sh r z c s 不能拼
|
||||||
|
if V == "o" and C in [
|
||||||
|
'd', 't', 'n', 'g', 'k', 'h', 'zh', 'ch', 'sh', 'r', 'z', 'c', 's'
|
||||||
|
]:
|
||||||
|
return
|
||||||
|
|
||||||
|
# ueng 只是 weng 这个 ad-hoc 其他情况下都是 ong
|
||||||
|
if V == 'ueng' and C != '':
|
||||||
|
return
|
||||||
|
|
||||||
|
# 非儿化的 er 只能单独存在
|
||||||
|
if V == 'er' and C != '':
|
||||||
|
return
|
||||||
|
|
||||||
|
if C == '':
|
||||||
|
if V in ["i", "in", "ing"]:
|
||||||
|
C = 'y'
|
||||||
|
elif V == 'u':
|
||||||
|
C = 'w'
|
||||||
|
elif V.startswith('i') and V not in ["ii", "iii"]:
|
||||||
|
C = 'y'
|
||||||
|
V = V[1:]
|
||||||
|
elif V.startswith('u'):
|
||||||
|
C = 'w'
|
||||||
|
V = V[1:]
|
||||||
|
elif V.startswith('v'):
|
||||||
|
C = 'yu'
|
||||||
|
V = V[1:]
|
||||||
|
else:
|
||||||
|
if C in ['j', 'q', 'x']:
|
||||||
|
if V.startswith('v'):
|
||||||
|
V = re.sub('v', 'u', V)
|
||||||
|
if V == 'iou':
|
||||||
|
V = 'iu'
|
||||||
|
elif V == 'uei':
|
||||||
|
V = 'ui'
|
||||||
|
elif V == 'uen':
|
||||||
|
V = 'un'
|
||||||
|
result = C + V
|
||||||
|
|
||||||
|
# Filter er 不能再儿化
|
||||||
|
if result.endswith('r') and R == 'r':
|
||||||
|
return
|
||||||
|
|
||||||
|
# ii and iii, change back to i
|
||||||
|
result = re.sub(r'i+', 'i', result)
|
||||||
|
|
||||||
|
result = result + R + T
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def generate_lexicon(with_tone=False, with_r=False):
|
||||||
|
# generate lexicon withou tone and erhua
|
||||||
|
syllables = OrderedDict()
|
||||||
|
|
||||||
|
for C in [''] + INITIALS:
|
||||||
|
for V in FINALS:
|
||||||
|
for R in [''] if not with_r else ['', 'r']:
|
||||||
|
for T in [''] if not with_tone else ['1', '2', '3', '4', '5']:
|
||||||
|
result = rule(C, V, R, T)
|
||||||
|
if result:
|
||||||
|
syllables[result] = f'{C} {V}{R}{T}'
|
||||||
|
return syllables
|
||||||
|
|
||||||
|
|
||||||
|
def generate_symbols(lexicon):
|
||||||
|
symbols = set()
|
||||||
|
for p in SPECIALS:
|
||||||
|
symbols.add(p)
|
||||||
|
for syllable, phonems in lexicon.items():
|
||||||
|
phonemes = phonems.split()
|
||||||
|
for p in phonemes:
|
||||||
|
symbols.add(p)
|
||||||
|
return sorted(list(symbols))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description="Generate lexicon for Chinese pinyin to phoneme for MFA")
|
||||||
|
parser.add_argument("output", type=str, help="Path to save lexicon.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--with-tone", action="store_true", help="whether to consider tone.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--with-r", action="store_true", help="whether to consider erhua.")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
lexicon = generate_lexicon(args.with_tone, args.with_r)
|
||||||
|
symbols = generate_symbols(lexicon)
|
||||||
|
|
||||||
|
with open(args.output + ".lexicon", 'wt') as f:
|
||||||
|
for k, v in lexicon.items():
|
||||||
|
f.write(f"{k} {v}\n")
|
||||||
|
|
||||||
|
with open(args.output + ".symbols", 'wt') as f:
|
||||||
|
for s in symbols:
|
||||||
|
f.write(s + "\n")
|
||||||
|
|
||||||
|
print("Done!")
|
|
@ -0,0 +1,102 @@
|
||||||
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from typing import Union
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
from pathlib import Path
|
||||||
|
import soundfile as sf
|
||||||
|
import librosa
|
||||||
|
from tqdm import tqdm
|
||||||
|
import os
|
||||||
|
import shutil
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
|
||||||
|
def get_transcripts(path: Union[str, Path]):
|
||||||
|
transcripts = {}
|
||||||
|
|
||||||
|
with open(path) as f:
|
||||||
|
lines = f.readlines()
|
||||||
|
|
||||||
|
for i in range(0, len(lines), 2):
|
||||||
|
sentence_id = lines[i].split()[0]
|
||||||
|
transcription = lines[i + 1].strip()
|
||||||
|
# tones are dropped here
|
||||||
|
# since the lexicon does not consider tones, too
|
||||||
|
transcription = " ".join([item[:-1] for item in transcription.split()])
|
||||||
|
transcripts[sentence_id] = transcription
|
||||||
|
|
||||||
|
return transcripts
|
||||||
|
|
||||||
|
|
||||||
|
def resample_and_save(source, target, sr=16000):
|
||||||
|
wav, _ = librosa.load(str(source), sr=sr)
|
||||||
|
sf.write(str(target), wav, samplerate=sr, subtype='PCM_16')
|
||||||
|
return target
|
||||||
|
|
||||||
|
|
||||||
|
def reorganize_baker(root_dir: Union[str, Path],
|
||||||
|
output_dir: Union[str, Path]=None,
|
||||||
|
resample_audio=False):
|
||||||
|
root_dir = Path(root_dir).expanduser()
|
||||||
|
transcript_path = root_dir / "ProsodyLabeling" / "000001-010000.txt"
|
||||||
|
transcriptions = get_transcripts(transcript_path)
|
||||||
|
|
||||||
|
wave_dir = root_dir / "Wave"
|
||||||
|
wav_paths = list(wave_dir.glob("*.wav"))
|
||||||
|
output_dir = Path(output_dir).expanduser()
|
||||||
|
assert wave_dir != output_dir, "Don't use an the original wav's directory as output_dir"
|
||||||
|
|
||||||
|
output_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
if resample_audio:
|
||||||
|
with ThreadPoolExecutor(os.cpu_count()) as pool:
|
||||||
|
with tqdm(total=len(wav_paths), desc="resampling") as pbar:
|
||||||
|
futures = []
|
||||||
|
for wav_path in wav_paths:
|
||||||
|
future = pool.submit(resample_and_save, wav_path,
|
||||||
|
output_dir / wav_path.name)
|
||||||
|
future.add_done_callback(lambda p: pbar.update())
|
||||||
|
futures.append(future)
|
||||||
|
|
||||||
|
results = []
|
||||||
|
for ft in futures:
|
||||||
|
results.append(ft.result())
|
||||||
|
else:
|
||||||
|
for wav_path in tqdm(wav_paths, desc="copying"):
|
||||||
|
shutil.copyfile(wav_path, output_dir / wav_path.name)
|
||||||
|
|
||||||
|
for sentence_id, transcript in tqdm(
|
||||||
|
transcriptions.items(), desc="transcription process"):
|
||||||
|
with open(output_dir / (sentence_id + ".lab"), 'wt') as f:
|
||||||
|
f.write(transcript)
|
||||||
|
f.write('\n')
|
||||||
|
print("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description="Reorganize Baker dataset for MFA")
|
||||||
|
parser.add_argument("--root-dir", type=str, help="path to baker dataset.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--output-dir",
|
||||||
|
type=str,
|
||||||
|
help="path to save outputs(audio and transcriptions)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--resample-audio",
|
||||||
|
action="store_true",
|
||||||
|
help="To resample audio files or just copy them")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
reorganize_baker(args.root_dir, args.output_dir, args.resample_audio)
|
|
@ -0,0 +1,44 @@
|
||||||
|
EXP_DIR=exp
|
||||||
|
|
||||||
|
LEXICON_NAME='simple'
|
||||||
|
if [ ! -f "$EXP_DIR/$LEXICON_NAME.lexicon" ]; then
|
||||||
|
echo "generating lexicon..."
|
||||||
|
python local/generate_lexicon.py "$EXP_DIR/$LEXICON_NAME" --with-r
|
||||||
|
echo "lexicon done"
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -d $EXP_DIR/baker_corpus ]; then
|
||||||
|
echo "reorganizing baker corpus..."
|
||||||
|
python local/recorganize_baker.py --root-dir=~/datasets/BZNSYP --output-dir=$EXP_DIR/baker_corpus --resample-audio
|
||||||
|
echo "reorganization done."
|
||||||
|
fi
|
||||||
|
|
||||||
|
echo "detecting oov..."
|
||||||
|
python local/detect_oov.py $EXP_DIR/baker_corpus $EXP_DIR/"$LEXICON_NAME.lexicon"
|
||||||
|
echo "detecting oov done. you may consider regenerate lexicon if there is unexpected OOVs."
|
||||||
|
|
||||||
|
|
||||||
|
MFA_DOWNLOAD_DIR=local/
|
||||||
|
|
||||||
|
if [ ! -f "$MFA_DOWNLOAD_DIR/montreal-forced-aligner_linux.tar.gz" ]; then
|
||||||
|
echo "downloading mfa..."
|
||||||
|
(cd $MFA_DOWNLOAD_DIR && wget https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner/releases/download/v1.0.1/montreal-forced-aligner_linux.tar.gz)
|
||||||
|
echo "download mfa done!"
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -d "$MFA_DOWNLOAD_DIR/montreal-forced-aligner" ]; then
|
||||||
|
echo "extracting mfa..."
|
||||||
|
(cd $MFA_DOWNLOAD_DIR && tar xvf "montreal-forced-aligner_linux.tar.gz")
|
||||||
|
echo "extraction done!"
|
||||||
|
fi
|
||||||
|
|
||||||
|
export PATH="$MFA_DOWNLOAD_DIR/montreal-forced-aligner/bin"
|
||||||
|
if [ ! -d "$EXP_DIR/baker_alignment" ]; then
|
||||||
|
echo "Start MFA training..."
|
||||||
|
mfa_train_and_align $EXP_DIR/baker_corpus "$EXP_DIR/$LEXICON_NAME.lexicon" $EXP_DIR/baker_alignment -o $EXP_DIR/baker_model --clean --verbose --temp_directory exp/.mfa_train_and_align
|
||||||
|
echo "training done! \nresults: $EXP_DIR/baker_alignment \nmodel: $EXP_DIR/baker_model\n"
|
||||||
|
fi
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue