add better traininig utility code
This commit is contained in:
parent
f9105db727
commit
61c13dd69b
|
@ -14,4 +14,7 @@
|
|||
|
||||
__version__ = "0.2.0-beta.0"
|
||||
|
||||
import logging
|
||||
from parakeet import audio, data, datasets, frontend, models, modules, training, utils
|
||||
|
||||
logging.getLogger('parakeet').addHandler(logging.NullHandler())
|
||||
|
|
|
@ -1,163 +0,0 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Callable, Mapping, List, Union
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class KBest(object):
|
||||
"""
|
||||
A utility class to help save the hard drive by only keeping K best
|
||||
checkpoints.
|
||||
|
||||
To be as modularized as possible, this class does not assume anything like
|
||||
a Trainer class or anything like a checkpoint directory, it does not know
|
||||
about the model or the optimizer, etc.
|
||||
|
||||
It is basically a dynamically mantained K-bset Mapping. When a new item is
|
||||
added to the map, save_fn is called. And when an item is removed from the
|
||||
map, del_fn is called. `save_fn` and `del_fn` takes a Path object as input
|
||||
and returns nothing.
|
||||
|
||||
Though it is designed to control checkpointing behaviors, it can be used
|
||||
to do something else if you pass some save_fn and del_fn.
|
||||
|
||||
Example
|
||||
--------
|
||||
|
||||
>>> from pathlib import Path
|
||||
>>> import shutil
|
||||
>>> import paddle
|
||||
>>> from paddle import nn
|
||||
|
||||
>>> model = nn.Linear(2, 3)
|
||||
>>> def save_model(path):
|
||||
... paddle.save(model.state_dict(), path)
|
||||
|
||||
>>> kbest_manager = KBest(max_size=5, save_fn=save_model)
|
||||
>>> checkpoint_dir = Path("checkpoints")
|
||||
>>> shutil.rmtree(checkpoint_dir)
|
||||
>>> checkpoint_dir.mkdir(parents=True)
|
||||
>>> a = np.random.rand(20)
|
||||
>>> for i, score in enumerate(a):
|
||||
... path = checkpoint_dir / f"step_{i}"
|
||||
... kbest_manager.add_checkpoint(score, path)
|
||||
>>> assert len(list(checkpoint_dir.glob("step_*"))) == 5
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
max_size: int=5,
|
||||
save_fn: Callable[[Union[Path, str]], None]=None,
|
||||
del_fn: Callable[[Union[Path, str]], None]=os.remove):
|
||||
self.best_records: Mapping[Path, float] = {}
|
||||
self.save_fn = save_fn
|
||||
self.del_fn = del_fn
|
||||
self.max_size = max_size
|
||||
self._save_all = (max_size == -1)
|
||||
|
||||
def should_save(self, metric: float) -> bool:
|
||||
if not self.full():
|
||||
return True
|
||||
|
||||
# already full
|
||||
worst_record_path = max(self.best_records, key=self.best_records.get)
|
||||
worst_metric = self.best_records[worst_record_path]
|
||||
return metric < worst_metric
|
||||
|
||||
def full(self):
|
||||
return (not self._save_all) and len(self.best_records) == self.max_size
|
||||
|
||||
def add_checkpoint(self, metric, path):
|
||||
if self.should_save(metric):
|
||||
self.save_checkpoint_and_update(metric, path)
|
||||
|
||||
def save_checkpoint_and_update(self, metric, path):
|
||||
# remove the worst
|
||||
if self.full():
|
||||
worst_record_path = max(self.best_records,
|
||||
key=self.best_records.get)
|
||||
self.best_records.pop(worst_record_path)
|
||||
self.del_fn(worst_record_path)
|
||||
|
||||
# add the new one
|
||||
self.save_fn(path)
|
||||
self.best_records[path] = metric
|
||||
|
||||
|
||||
class KLatest(object):
|
||||
"""
|
||||
A utility class to help save the hard drive by only keeping K latest
|
||||
checkpoints.
|
||||
|
||||
To be as modularized as possible, this class does not assume anything like
|
||||
a Trainer class or anything like a checkpoint directory, it does not know
|
||||
about the model or the optimizer, etc.
|
||||
|
||||
It is basically a dynamically mantained Queue. When a new item is
|
||||
added to the queue, save_fn is called. And when an item is removed from the
|
||||
queue, del_fn is called. `save_fn` and `del_fn` takes a Path object as input
|
||||
and returns nothing.
|
||||
|
||||
Though it is designed to control checkpointing behaviors, it can be used
|
||||
to do something else if you pass some save_fn and del_fn.
|
||||
|
||||
Example
|
||||
--------
|
||||
|
||||
>>> from pathlib import Path
|
||||
>>> import shutil
|
||||
>>> import paddle
|
||||
>>> from paddle import nn
|
||||
|
||||
>>> model = nn.Linear(2, 3)
|
||||
>>> def save_model(path):
|
||||
... paddle.save(model.state_dict(), path)
|
||||
|
||||
>>> klatest_manager = KLatest(max_size=5, save_fn=save_model)
|
||||
>>> checkpoint_dir = Path("checkpoints")
|
||||
>>> shutil.rmtree(checkpoint_dir)
|
||||
>>> checkpoint_dir.mkdir(parents=True)
|
||||
>>> for i in range(20):
|
||||
... path = checkpoint_dir / f"step_{i}"
|
||||
... klatest_manager.add_checkpoint(path)
|
||||
>>> assert len(list(checkpoint_dir.glob("step_*"))) == 5
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
max_size: int=5,
|
||||
save_fn: Callable[[Path], None]=None,
|
||||
del_fn: Callable[[Path], None]=lambda f: f.unlink()):
|
||||
self.latest_records: List[Path] = []
|
||||
self.save_fn = save_fn
|
||||
self.del_fn = del_fn
|
||||
self.max_size = max_size
|
||||
self._save_all = (max_size == -1)
|
||||
|
||||
def full(self):
|
||||
return (
|
||||
not self._save_all) and len(self.latest_records) == self.max_size
|
||||
|
||||
def add_checkpoint(self, path):
|
||||
self.save_checkpoint_and_update(path)
|
||||
|
||||
def save_checkpoint_and_update(self, path):
|
||||
# remove the earist
|
||||
if self.full():
|
||||
eariest_record_path = self.latest_records.pop(0)
|
||||
self.del_fn(eariest_record_path)
|
||||
|
||||
# add the new one
|
||||
self.save_fn(path)
|
||||
self.latest_records.append(path)
|
|
@ -0,0 +1,80 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Callable
|
||||
|
||||
PRIORITY_WRITER = 300
|
||||
PRIORITY_EDITOR = 200
|
||||
PRIORITY_READER = 100
|
||||
|
||||
|
||||
class Extension(object):
|
||||
"""Extension to customize the behavior of Trainer."""
|
||||
trigger = (1, 'iteration')
|
||||
priority = PRIORITY_READER
|
||||
name = None
|
||||
|
||||
@property
|
||||
def default_name(self):
|
||||
"""Default name of the extension, class name by default."""
|
||||
return type(self).__name__
|
||||
|
||||
def __call__(self, trainer):
|
||||
"""Main action of the extention. After each update, it is executed
|
||||
when the trigger fires."""
|
||||
raise NotImplementedError(
|
||||
'Extension implementation must override __call__.')
|
||||
|
||||
def initialize(self, trainer):
|
||||
"""Action that is executed once to get the corect trainer state.
|
||||
It is called before training normally, but if the trainer restores
|
||||
states with an Snapshot extension, this method should also be called.g
|
||||
"""
|
||||
pass
|
||||
|
||||
def on_error(self, trainer, exc, tb):
|
||||
"""Handles the error raised during training before finalization.
|
||||
"""
|
||||
pass
|
||||
|
||||
def finalize(self, trainer):
|
||||
"""Action that is executed when training is done.
|
||||
For example, visualizers would need to be closed.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
def make_extension(trigger: Callable=None,
|
||||
default_name: str=None,
|
||||
priority: int=None,
|
||||
finalizer: Callable=None,
|
||||
initializer: Callable=None,
|
||||
on_error: Callable=None):
|
||||
"""Make an Extension-like object by injecting required attributes to it.
|
||||
"""
|
||||
if trigger is None:
|
||||
trigger = Extension.trigger
|
||||
if priority is None:
|
||||
priority = Extension.priority
|
||||
|
||||
def decorator(ext):
|
||||
ext.trigger = trigger
|
||||
ext.default_name = default_name or ext.__name__
|
||||
ext.priority = priority
|
||||
ext.finalize = finalizer
|
||||
ext.on_error = on_error
|
||||
ext.initialize = initializer
|
||||
return ext
|
||||
|
||||
return decorator
|
|
@ -22,9 +22,17 @@ from paddle.nn import Layer
|
|||
from paddle.io import DataLoader
|
||||
|
||||
from parakeet.training.reporter import scope, report, DictSummary
|
||||
from parakeet.training import extension
|
||||
|
||||
|
||||
class StandardEvaluator(object):
|
||||
class StandardEvaluator(extension.Extension):
|
||||
|
||||
trigger = (1, 'epoch')
|
||||
default_name = 'validation'
|
||||
priority = extension.PRIORITY_WRITER
|
||||
|
||||
name = None
|
||||
|
||||
def __init__(self, model: Layer, dataloader: DataLoader):
|
||||
# it is designed to hold multiple models
|
||||
models = {"main": model}
|
||||
|
@ -43,21 +51,23 @@ class StandardEvaluator(object):
|
|||
for layer in self.models.values():
|
||||
layer.eval()
|
||||
|
||||
# to average evaluation metrics
|
||||
summary = DictSummary()
|
||||
for batch in self.dataloader:
|
||||
observation = {}
|
||||
with scope(observation):
|
||||
# main evaluation computation here.
|
||||
with paddle.no_grad():
|
||||
self.evaluate_core(
|
||||
batch) # main evaluation computation here.
|
||||
self.evaluate_core(batch)
|
||||
summary.add(observation)
|
||||
summary = summary.compute_mean()
|
||||
return summary
|
||||
|
||||
def __call__(self, trainer=None):
|
||||
self.observation = {}
|
||||
with scope(self.observation):
|
||||
summary = self.evaluate()
|
||||
for k, v in summary.items():
|
||||
report(k, v)
|
||||
print(self.observation)
|
||||
# evaluate and report the averaged metric to current observation
|
||||
# if it is used to extend a trainer, the metrics is reported to
|
||||
# to observation of the trainer
|
||||
# or otherwise, you can use your own observation
|
||||
summary = self.evaluate()
|
||||
for k, v in summary.items():
|
||||
report(k, v)
|
||||
|
|
|
@ -12,18 +12,26 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Union, List, Dict, Any
|
||||
from pathlib import Path
|
||||
import jsonlines
|
||||
import os
|
||||
from pathlib import Path
|
||||
from datetime import datetime
|
||||
import logging
|
||||
from typing import List, Dict, Any
|
||||
|
||||
import jsonlines
|
||||
|
||||
from parakeet.utils.mp_tools import rank_zero_only
|
||||
from parakeet.training.trainer import Trainer
|
||||
from parakeet.training import extension
|
||||
|
||||
|
||||
class Snapshot(object):
|
||||
def load_records(records_fp):
|
||||
"""Load record files (json lines.)"""
|
||||
with jsonlines.open(records_fp, 'r') as reader:
|
||||
records = list(reader)
|
||||
return records
|
||||
|
||||
|
||||
class Snapshot(extension.Extension):
|
||||
"""An extension to make snapshot of the updater object inside
|
||||
the trainer. It is done by calling the updater's `save` method.
|
||||
|
||||
|
@ -38,34 +46,46 @@ class Snapshot(object):
|
|||
The directory to save checkpoints into.
|
||||
"""
|
||||
|
||||
def __init__(self, max_size: int=5):
|
||||
trigger = (1, 'epoch')
|
||||
priority = -100
|
||||
|
||||
def __init__(self, max_size: int=5, snapshot_on_error: bool=False):
|
||||
self.records: List[Dict[str, Any]] = []
|
||||
self.max_size = max_size
|
||||
self._snapshot_on_error = snapshot_on_error
|
||||
self._save_all = (max_size == -1)
|
||||
self.save_fn =...
|
||||
self.del_fn =...
|
||||
self.del_fn = os.remove
|
||||
self.checkpoint_dir =...
|
||||
|
||||
def initialize(self, trainer):
|
||||
"""setting up this extention."""
|
||||
def initialize(self, trainer: Trainer):
|
||||
"""Setting up this extention."""
|
||||
self.save_fn = trainer.updater.save
|
||||
self.del_fn = os.remove
|
||||
self.checkpoint_dir = trainer.out / "checkpoints"
|
||||
|
||||
# load existing records
|
||||
record_path: Path = self.checkpoint_dir / "records.yaml"
|
||||
if record_path.exists():
|
||||
self.records = load_records(record_path)
|
||||
|
||||
def on_error(self, trainer, exc, tb):
|
||||
if self._snapshot_on_error:
|
||||
self.save_checkpoint_and_update(trainer)
|
||||
|
||||
def __call__(self, trainer: Trainer):
|
||||
self.save_checkpoint_and_update(trainer)
|
||||
|
||||
def full(self):
|
||||
return (not self._save_all) and len(self.records) >= self.max_size
|
||||
"""Whether the number of snapshots it keeps track of is greater
|
||||
than the max_size."""
|
||||
return (not self._save_all) and len(self.records) > self.max_size
|
||||
|
||||
@rank_zero_only
|
||||
def save_checkpoint_and_update(self, trainer):
|
||||
def save_checkpoint_and_update(self, trainer: Trainer):
|
||||
"""Saving new snapshot and remove the oldest snapshot if needed."""
|
||||
iteration = trainer.updater.state.iteration
|
||||
path = self.checkpoint_dir / f"snapshot_iter_{iteration}.pdz"
|
||||
|
||||
# remove the earist
|
||||
if self.full():
|
||||
eariest_record = self.records[0]
|
||||
self.del_fn(eariest_record["path"])
|
||||
self.records.pop(0)
|
||||
|
||||
# add the new one
|
||||
self.save_fn(path)
|
||||
record = {
|
||||
|
@ -75,10 +95,14 @@ class Snapshot(object):
|
|||
}
|
||||
self.records.append(record)
|
||||
|
||||
# update the record
|
||||
with jsonlines.open(self.checkpoint_dir / "records.jsonl", 'w') as f:
|
||||
for record in self.records:
|
||||
f.write(record)
|
||||
# remove the earist
|
||||
if self.full():
|
||||
eariest_record = self.records[0]
|
||||
self.del_fn(eariest_record["path"])
|
||||
self.records.pop(0)
|
||||
|
||||
def __call__(self, trainer):
|
||||
self.save_checkpoint_and_update(trainer)
|
||||
# update the record file
|
||||
record_path = self.checkpoint_dir / "records.jsonl"
|
||||
with jsonlines.open(record_path, 'w') as writer:
|
||||
for record in self.records:
|
||||
writer.write(record)
|
||||
|
|
|
@ -13,22 +13,31 @@
|
|||
# limitations under the License.
|
||||
|
||||
from visualdl import LogWriter
|
||||
|
||||
from parakeet.training.trainer import Trainer
|
||||
from parakeet.utils.mp_tools import rank_zero_only
|
||||
from parakeet.training import extension
|
||||
|
||||
|
||||
class VisualDL(object):
|
||||
class VisualDL(extension.Extension):
|
||||
"""A wrapper of visualdl log writer. It assumes that the metrics to be visualized
|
||||
are all scalars which are recorded into the `.observation` dictionary of the
|
||||
trainer object. The dictionary is created for each step, thus the visualdl log
|
||||
are all scalars which are recorded into the `.observation` dictionary of the
|
||||
trainer object. The dictionary is created for each step, thus the visualdl log
|
||||
writer uses the iteration from the updater's `iteration` as the global step to
|
||||
add records.
|
||||
"""
|
||||
trigger = (1, 'iteration')
|
||||
default_name = 'visualdl'
|
||||
priority = extension.PRIORITY_READER
|
||||
|
||||
def __init__(self, writer: LogWriter):
|
||||
self.writer = writer
|
||||
def __init__(self):
|
||||
self.writer =...
|
||||
|
||||
def initialize(self, trainer):
|
||||
self.writer = LogWriter(logdir=str(trainer.out))
|
||||
|
||||
@rank_zero_only
|
||||
def __call__(self, trainer: Trainer):
|
||||
for k, v in trainer.observation.items():
|
||||
self.writer.add_scalar(k, v, step=trainer.updater.state.iteration)
|
||||
|
||||
def finalize(self, trainer):
|
||||
self.writer.close()
|
||||
|
|
|
@ -12,14 +12,15 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import random
|
||||
import logging
|
||||
|
||||
import paddle
|
||||
import random
|
||||
import numpy as np
|
||||
|
||||
|
||||
def seed_everything(seed: int):
|
||||
"""Seed paddle, random and np.random to help reproductivity."""
|
||||
paddle.seed(seed)
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
|
|
|
@ -13,15 +13,18 @@
|
|||
# limitations under the License.
|
||||
|
||||
from pathlib import Path
|
||||
from collections import OrderedDict
|
||||
from typing import Callable, Union, List
|
||||
|
||||
import tqdm
|
||||
from dataclasses import dataclass
|
||||
|
||||
from parakeet.training.trigger import get_trigger, IntervalTrigger
|
||||
from parakeet.training.updater import UpdaterBase
|
||||
from parakeet.training.reporter import scope
|
||||
from parakeet.training.extension import Extension, PRIORITY_READER
|
||||
|
||||
|
||||
class ExtensionEntry(object):
|
||||
class _ExtensionEntry(object):
|
||||
def __init__(self, extension, trigger, priority):
|
||||
self.extension = extension
|
||||
self.trigger = trigger
|
||||
|
@ -31,29 +34,76 @@ class ExtensionEntry(object):
|
|||
class Trainer(object):
|
||||
def __init__(self,
|
||||
updater: UpdaterBase,
|
||||
stop_trigger=None,
|
||||
out='result',
|
||||
extensions=None):
|
||||
stop_trigger: Callable=None,
|
||||
out: Union[str, Path]='result',
|
||||
extensions: List[Extension]=None):
|
||||
self.updater = updater
|
||||
self.extensions = {}
|
||||
self.extensions = OrderedDict()
|
||||
self.stop_trigger = get_trigger(stop_trigger)
|
||||
self.out = Path(out)
|
||||
self.observation = {}
|
||||
self.observation =...
|
||||
|
||||
self._done = False
|
||||
if extensions:
|
||||
for ext in extensions:
|
||||
self.extend(ext)
|
||||
|
||||
@property
|
||||
def is_before_training(self):
|
||||
return self.updater.state.iteration == 0
|
||||
|
||||
def extend(self, extension, name=None, trigger=None, priority=None):
|
||||
# get name for the extension
|
||||
# argument \
|
||||
# -> extention's name \
|
||||
# -> default_name (class name, when it is an object) \
|
||||
# -> function name when it is a function \
|
||||
# -> error
|
||||
|
||||
if name is None:
|
||||
name = getattr(extension, 'name', None)
|
||||
if name is None:
|
||||
name = getattr(extenion, 'default_name', None)
|
||||
if name is None:
|
||||
name = getattr(extension, '__name__', None)
|
||||
if name is None:
|
||||
raise ValueError(
|
||||
"Name is not given for the extension.")
|
||||
if name == 'training':
|
||||
raise ValueError("training is a reserved name.")
|
||||
|
||||
if trigger is None:
|
||||
trigger = getattr(extension, 'trigger', (1, 'iteration'))
|
||||
trigger = get_trigger(trigger)
|
||||
|
||||
if priority is None:
|
||||
priority = getattr(extension, 'priority', PRIORITY_READER)
|
||||
|
||||
# add suffix to avoid nameing conflict
|
||||
ordinal = 0
|
||||
modified_name = name
|
||||
while modified_name in self.extensions:
|
||||
print(self.extensions.keys())
|
||||
ordinal += 1
|
||||
modified_name = f"{name}_{ordinal}"
|
||||
extension.name = modified_name
|
||||
|
||||
self.extensions[modified_name] = ExtensionEntry(extension, trigger,
|
||||
priority)
|
||||
self.extensions[modified_name] = _ExtensionEntry(extension, trigger,
|
||||
priority)
|
||||
|
||||
def get_extension(self, name):
|
||||
"""get extension by name."""
|
||||
extensions = self.extensions
|
||||
if name in extensions:
|
||||
return extensions[name].extension
|
||||
else:
|
||||
raise ValueError(f'extension {name} not found')
|
||||
|
||||
def run(self):
|
||||
if self._done:
|
||||
raise RuntimeError("Training is already done!.")
|
||||
|
||||
self.out.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# sort extensions by priorities once
|
||||
extension_order = sorted(
|
||||
self.extensions.keys(),
|
||||
|
@ -67,7 +117,7 @@ class Trainer(object):
|
|||
if hasattr(entry.extension, "initialize"):
|
||||
entry.extension.initialize(self)
|
||||
|
||||
update = self.updater.update
|
||||
update = self.updater.update # training step
|
||||
stop_trigger = self.stop_trigger
|
||||
|
||||
# TODO(chenfeiyu): display progress bar correctly
|
||||
|
|
|
@ -12,21 +12,7 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
class IntervalTrigger(object):
|
||||
def __init__(self, period: int, unit: str):
|
||||
if unit not in ("iteration", "epoch"):
|
||||
raise ValueError("unit should be 'iteration' or 'epoch'")
|
||||
self.period = period
|
||||
self.unit = unit
|
||||
|
||||
def __call__(self, trainer):
|
||||
state = trainer.updater.state
|
||||
if self.unit == "epoch":
|
||||
fire = state.epoch % self.period == 0
|
||||
else:
|
||||
fire = state.iteration % self.period == 0
|
||||
return fire
|
||||
from parakeet.training.triggers.interval_trigger import IntervalTrigger
|
||||
|
||||
|
||||
def never_file_trigger(trainer):
|
||||
|
|
|
@ -0,0 +1,35 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
class IntervalTrigger(object):
|
||||
"""A Predicate to do something every N cycle."""
|
||||
|
||||
def __init__(self, period: int, unit: str):
|
||||
if unit not in ("iteration", "epoch"):
|
||||
raise ValueError("unit should be 'iteration' or 'epoch'")
|
||||
self.period = period
|
||||
self.unit = unit
|
||||
|
||||
def __call__(self, trainer):
|
||||
state = trainer.updater.state
|
||||
# we use a special scheme so we can use iteration % period == 0 as
|
||||
# the predicate
|
||||
# increase the iteration then update parameters
|
||||
# instead of updating then increase iteration
|
||||
if self.unit == "epoch":
|
||||
fire = state.epoch % self.period == 0
|
||||
else:
|
||||
fire = state.iteration % self.period == 0
|
||||
return fire
|
|
@ -0,0 +1,35 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
class TimeTrigger(object):
|
||||
"""Trigger based on a fixed time interval.
|
||||
|
||||
This trigger accepts iterations with a given interval time.
|
||||
|
||||
Args:
|
||||
period (float): Interval time. It is given in seconds.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, period):
|
||||
self._period = period
|
||||
self._next_time = self._period
|
||||
|
||||
def __call__(self, trainer):
|
||||
if self._next_time < trainer.elapsed_time:
|
||||
self._next_time += self._period
|
||||
return True
|
||||
else:
|
||||
return False
|
|
@ -93,125 +93,3 @@ class UpdaterBase(object):
|
|||
def load(self, path):
|
||||
archive = paddle.load(path)
|
||||
self.set_state_dict(archive)
|
||||
|
||||
|
||||
class StandardUpdater(UpdaterBase):
|
||||
"""An example of over-simplification. Things may not be that simple, but
|
||||
you can subclass it to fit your need.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model: Layer,
|
||||
optimizer: Optimizer,
|
||||
dataloader: DataLoader,
|
||||
init_state: Optional[UpdaterState]=None):
|
||||
# it is designed to hold multiple models
|
||||
models = {"main": model}
|
||||
self.models: Dict[str, Layer] = models
|
||||
self.model = model
|
||||
|
||||
# it is designed to hold multiple optimizers
|
||||
optimizers = {"main": optimizer}
|
||||
self.optimizer = optimizer
|
||||
self.optimizers: Dict[str, Optimizer] = optimizers
|
||||
|
||||
# dataloaders
|
||||
self.dataloader = dataloader
|
||||
|
||||
# init state
|
||||
if init_state is None:
|
||||
self.state = UpdaterState()
|
||||
else:
|
||||
self.state = init_state
|
||||
|
||||
self.train_iterator = iter(dataloader)
|
||||
|
||||
def update(self):
|
||||
self.state.iteration += 1
|
||||
|
||||
# switch to training mode
|
||||
for layer in self.models.values():
|
||||
layer.train()
|
||||
|
||||
# training for a step is implemented here
|
||||
batch = self.read_batch()
|
||||
self.update_core(batch)
|
||||
|
||||
def update_core(self, batch):
|
||||
"""A simple case for a training step. Basic assumptions are:
|
||||
Single model;
|
||||
Single optimizer;
|
||||
A batch from the dataloader is just the input of the model;
|
||||
The model return a single loss, or a dict containing serval losses.
|
||||
Parameters updates at every batch, no gradient accumulation.
|
||||
"""
|
||||
loss = self.model(*batch)
|
||||
|
||||
if isinstance(loss, Tensor):
|
||||
loss_dict = {"main": loss}
|
||||
else:
|
||||
# Dict[str, Tensor]
|
||||
loss_dict = loss
|
||||
if "main" not in loss_dict:
|
||||
main_loss = 0
|
||||
for loss_item in loss.values():
|
||||
main_loss += loss_item
|
||||
loss_dict["main"] = main_loss
|
||||
|
||||
for name, loss_item in loss_dict.items():
|
||||
report(name, float(loss_item))
|
||||
|
||||
self.optimizer.clear_gradient()
|
||||
loss_dict["main"].backward()
|
||||
self.optimizer.update()
|
||||
|
||||
def new_epoch(self):
|
||||
"""Start a new epoch."""
|
||||
self.state.epoch += 1
|
||||
|
||||
# NOTE: all batch sampler for distributed training should
|
||||
# subclass DistributedBatchSampler and implement `set_epoch` method
|
||||
batch_sampler = self.dataloader.batch_sampler
|
||||
if isinstance(batch_sampler, DistributedBatchSampler):
|
||||
batch_sampler.set_epoch(self.state.epoch)
|
||||
self.train_iterator = iter(self.dataloader)
|
||||
|
||||
def read_batch(self):
|
||||
"""Read a batch from the data loader, auto renew when data is exhausted."""
|
||||
with timer() as t:
|
||||
try:
|
||||
batch = next(self.train_iterator)
|
||||
except StopIteration:
|
||||
self.new_epoch()
|
||||
batch = next(self.train_iterator)
|
||||
logging.debug(
|
||||
f"Read a batch takes {t.elapse}s.") # replace it with logging
|
||||
return batch
|
||||
|
||||
def state_dict(self):
|
||||
"""State dict of a Updater, model, optimizer and updater state are included."""
|
||||
state_dict = super().state_dict()
|
||||
for name, layer in self.models.items():
|
||||
state_dict[f"{name}_params"] = layer.state_dict()
|
||||
for name, optim in self.optimizers.items():
|
||||
state_dict[f"{name}_optimizer"] = optim.state_dict()
|
||||
return state_dict
|
||||
|
||||
def set_state_dict(self, state_dict):
|
||||
"""Set state dict for a Updater. Parameters of models, states for
|
||||
optimizers and UpdaterState are restored."""
|
||||
for name, layer in self.models.items():
|
||||
layer.set_state_dict(state_dict[f"{name}_params"])
|
||||
for name, optim in self.optimizers.items():
|
||||
optim.set_state_dict(state_dict[f"{name}_optimizer"])
|
||||
super().set_state_dict(state_dict)
|
||||
|
||||
def save(self, path):
|
||||
"""Save Updater state dict."""
|
||||
archive = self.state_dict()
|
||||
paddle.save(archive, path)
|
||||
|
||||
def load(self, path):
|
||||
"""Load Updater state dict."""
|
||||
archive = paddle.load(path)
|
||||
self.set_state_dict(archive)
|
||||
|
|
|
@ -0,0 +1,152 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
from typing import Dict
|
||||
from typing import Union
|
||||
|
||||
from timer import timer
|
||||
import paddle
|
||||
from paddle import Tensor
|
||||
from paddle.nn import Layer
|
||||
from paddle.optimizer import Optimizer
|
||||
from paddle.io import DataLoader
|
||||
from paddle.io import DistributedBatchSampler
|
||||
|
||||
from parakeet.training.reporter import report
|
||||
from parakeet.training.updater import UpdaterBase, UpdaterState
|
||||
|
||||
|
||||
class StandardUpdater(UpdaterBase):
|
||||
"""An example of over-simplification. Things may not be that simple, but
|
||||
you can subclass it to fit your need.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model: Layer,
|
||||
optimizer: Optimizer,
|
||||
dataloader: DataLoader,
|
||||
init_state: Optional[UpdaterState]=None):
|
||||
# it is designed to hold multiple models
|
||||
models = {"main": model}
|
||||
self.models: Dict[str, Layer] = models
|
||||
self.model = model
|
||||
|
||||
# it is designed to hold multiple optimizers
|
||||
optimizers = {"main": optimizer}
|
||||
self.optimizer = optimizer
|
||||
self.optimizers: Dict[str, Optimizer] = optimizers
|
||||
|
||||
# dataloaders
|
||||
self.dataloader = dataloader
|
||||
|
||||
# init state
|
||||
if init_state is None:
|
||||
self.state = UpdaterState()
|
||||
else:
|
||||
self.state = init_state
|
||||
|
||||
self.train_iterator = iter(dataloader)
|
||||
|
||||
def update(self):
|
||||
self.state.iteration += 1
|
||||
|
||||
# switch to training mode
|
||||
for layer in self.models.values():
|
||||
layer.train()
|
||||
|
||||
# training for a step is implemented here
|
||||
batch = self.read_batch()
|
||||
self.update_core(batch)
|
||||
|
||||
def update_core(self, batch):
|
||||
"""A simple case for a training step. Basic assumptions are:
|
||||
Single model;
|
||||
Single optimizer;
|
||||
A batch from the dataloader is just the input of the model;
|
||||
The model return a single loss, or a dict containing serval losses.
|
||||
Parameters updates at every batch, no gradient accumulation.
|
||||
"""
|
||||
loss = self.model(*batch)
|
||||
|
||||
if isinstance(loss, Tensor):
|
||||
loss_dict = {"main": loss}
|
||||
else:
|
||||
# Dict[str, Tensor]
|
||||
loss_dict = loss
|
||||
if "main" not in loss_dict:
|
||||
main_loss = 0
|
||||
for loss_item in loss.values():
|
||||
main_loss += loss_item
|
||||
loss_dict["main"] = main_loss
|
||||
|
||||
for name, loss_item in loss_dict.items():
|
||||
report(name, float(loss_item))
|
||||
|
||||
self.optimizer.clear_gradient()
|
||||
loss_dict["main"].backward()
|
||||
self.optimizer.update()
|
||||
|
||||
def new_epoch(self):
|
||||
"""Start a new epoch."""
|
||||
self.state.epoch += 1
|
||||
|
||||
# NOTE: all batch sampler for distributed training should
|
||||
# subclass DistributedBatchSampler and implement `set_epoch` method
|
||||
batch_sampler = self.dataloader.batch_sampler
|
||||
if isinstance(batch_sampler, DistributedBatchSampler):
|
||||
batch_sampler.set_epoch(self.state.epoch)
|
||||
self.train_iterator = iter(self.dataloader)
|
||||
|
||||
def read_batch(self):
|
||||
"""Read a batch from the data loader, auto renew when data is exhausted."""
|
||||
with timer() as t:
|
||||
try:
|
||||
batch = next(self.train_iterator)
|
||||
except StopIteration:
|
||||
self.new_epoch()
|
||||
batch = next(self.train_iterator)
|
||||
logging.debug(
|
||||
f"Read a batch takes {t.elapse}s.") # replace it with logging
|
||||
return batch
|
||||
|
||||
def state_dict(self):
|
||||
"""State dict of a Updater, model, optimizer and updater state are included."""
|
||||
state_dict = super().state_dict()
|
||||
for name, layer in self.models.items():
|
||||
state_dict[f"{name}_params"] = layer.state_dict()
|
||||
for name, optim in self.optimizers.items():
|
||||
state_dict[f"{name}_optimizer"] = optim.state_dict()
|
||||
return state_dict
|
||||
|
||||
def set_state_dict(self, state_dict):
|
||||
"""Set state dict for a Updater. Parameters of models, states for
|
||||
optimizers and UpdaterState are restored."""
|
||||
for name, layer in self.models.items():
|
||||
layer.set_state_dict(state_dict[f"{name}_params"])
|
||||
for name, optim in self.optimizers.items():
|
||||
optim.set_state_dict(state_dict[f"{name}_optimizer"])
|
||||
super().set_state_dict(state_dict)
|
||||
|
||||
def save(self, path):
|
||||
"""Save Updater state dict."""
|
||||
archive = self.state_dict()
|
||||
paddle.save(archive, path)
|
||||
|
||||
def load(self, path):
|
||||
"""Load Updater state dict."""
|
||||
archive = paddle.load(path)
|
||||
self.set_state_dict(archive)
|
|
@ -1,56 +0,0 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from pathlib import Path
|
||||
import shutil
|
||||
|
||||
import numpy as np
|
||||
from parakeet.training.checkpoint import KBest, KLatest
|
||||
|
||||
|
||||
def test_kbest():
|
||||
def save_fn(path):
|
||||
with open(path, 'wt') as f:
|
||||
f.write(f"My path is {str(path)}\n")
|
||||
|
||||
K = 1
|
||||
kbest_manager = KBest(max_size=K, save_fn=save_fn)
|
||||
checkpoint_dir = Path("checkpoints")
|
||||
if checkpoint_dir.exists():
|
||||
shutil.rmtree(checkpoint_dir)
|
||||
checkpoint_dir.mkdir(parents=True)
|
||||
a = np.random.rand(20)
|
||||
for i, score in enumerate(a):
|
||||
path = checkpoint_dir / f"step_{i}"
|
||||
kbest_manager.add_checkpoint(score, path)
|
||||
assert len(list(checkpoint_dir.glob("step_*"))) == K
|
||||
shutil.rmtree(checkpoint_dir)
|
||||
|
||||
|
||||
def test_klatest():
|
||||
def save_fn(path):
|
||||
with open(path, 'wt') as f:
|
||||
f.write(f"My path is {str(path)}\n")
|
||||
|
||||
K = 5
|
||||
klatest_manager = KLatest(max_size=K, save_fn=save_fn)
|
||||
checkpoint_dir = Path("checkpoints")
|
||||
if checkpoint_dir.exists():
|
||||
shutil.rmtree(checkpoint_dir)
|
||||
checkpoint_dir.mkdir(parents=True)
|
||||
for i in range(20):
|
||||
path = checkpoint_dir / f"step_{i}"
|
||||
klatest_manager.add_checkpoint(path)
|
||||
assert len(list(checkpoint_dir.glob("step_*"))) == K
|
||||
shutil.rmtree(checkpoint_dir)
|
Loading…
Reference in New Issue