Merge branch 'add_TranTTS' into 'master'

update fastspeech

See merge request !4
This commit is contained in:
lifuchen 2020-01-15 14:11:34 +08:00
commit 6e7566fa91
13 changed files with 58 additions and 66 deletions

View File

@ -14,7 +14,6 @@ encoder_n_layer: 6
encoder_head: 2
encoder_conv1d_filter_size: 1536
max_sep_len: 2048
fs_embedding_size: 384
decoder_n_layer: 6
decoder_head: 2
decoder_conv1d_filter_size: 1536
@ -39,6 +38,6 @@ use_gpu: True
use_data_parallel: False
data_path: ../../../dataset/LJSpeech-1.1
transtts_path: ../transformerTTS/checkpoint
transformer_step: 1
transtts_path: ../transformerTTS/checkpoint/
transformer_step: 10
log_dir: ./log

View File

@ -4,7 +4,7 @@ import utils
import paddle.fluid.dygraph as dg
import paddle.fluid.layers as layers
import paddle.fluid as fluid
from parakeet.modules.layers import Conv1D
from parakeet.modules.layers import Conv, Linear
from parakeet.modules.multihead_attention import MultiheadAttention
from parakeet.modules.feed_forward import PositionwiseFeedForward
@ -113,12 +113,12 @@ class DurationPredictor(dg.Layer):
self.filter_size = filter_size
self.dropout = dropout
self.conv1 = Conv1D(in_channels = self.input_size,
self.conv1 = Conv(in_channels = self.input_size,
out_channels = self.out_channels,
filter_size = self.filter_size,
padding=1,
data_format='NTC')
self.conv2 = Conv1D(in_channels = self.out_channels,
self.conv2 = Conv(in_channels = self.out_channels,
out_channels = self.out_channels,
filter_size = self.filter_size,
padding=1,
@ -126,7 +126,7 @@ class DurationPredictor(dg.Layer):
self.layer_norm1 = dg.LayerNorm(self.out_channels)
self.layer_norm2 = dg.LayerNorm(self.out_channels)
self.linear =dg.Linear(self.out_channels, 1)
self.linear =Linear(self.out_channels, 1)
def forward(self, encoder_output):
"""

View File

@ -5,12 +5,12 @@ import paddle.fluid as fluid
from parakeet.g2p.text.symbols import symbols
from parakeet.modules.utils import *
from parakeet.modules.post_convnet import PostConvNet
from parakeet.modules.layers import Linear
class Encoder(dg.Layer):
def __init__(self,
n_src_vocab,
len_max_seq,
d_word_vec,
n_layers,
n_head,
d_k,
@ -23,9 +23,9 @@ class Encoder(dg.Layer):
super(Encoder, self).__init__()
n_position = len_max_seq + 1
self.src_word_emb = dg.Embedding(size=[n_src_vocab, d_word_vec], padding_idx=0)
self.pos_inp = get_sinusoid_encoding_table(n_position, d_word_vec, padding_idx=0)
self.position_enc = dg.Embedding(size=[n_position, d_word_vec],
self.src_word_emb = dg.Embedding(size=[n_src_vocab, d_model], padding_idx=0)
self.pos_inp = get_sinusoid_encoding_table(n_position, d_model, padding_idx=0)
self.position_enc = dg.Embedding(size=[n_position, d_model],
padding_idx=0,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(self.pos_inp),
@ -70,7 +70,6 @@ class Encoder(dg.Layer):
class Decoder(dg.Layer):
def __init__(self,
len_max_seq,
d_word_vec,
n_layers,
n_head,
d_k,
@ -83,8 +82,8 @@ class Decoder(dg.Layer):
super(Decoder, self).__init__()
n_position = len_max_seq + 1
self.pos_inp = get_sinusoid_encoding_table(n_position, d_word_vec, padding_idx=0)
self.position_enc = dg.Embedding(size=[n_position, d_word_vec],
self.pos_inp = get_sinusoid_encoding_table(n_position, d_model, padding_idx=0)
self.position_enc = dg.Embedding(size=[n_position, d_model],
padding_idx=0,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(self.pos_inp),
@ -131,11 +130,10 @@ class FastSpeech(dg.Layer):
self.encoder = Encoder(n_src_vocab=len(symbols)+1,
len_max_seq=cfg.max_sep_len,
d_word_vec=cfg.fs_embedding_size,
n_layers=cfg.encoder_n_layer,
n_head=cfg.encoder_head,
d_k=64,
d_v=64,
d_k=cfg.fs_hidden_size // cfg.encoder_head,
d_v=cfg.fs_hidden_size // cfg.encoder_head,
d_model=cfg.fs_hidden_size,
d_inner=cfg.encoder_conv1d_filter_size,
fft_conv1d_kernel=cfg.fft_conv1d_filter,
@ -146,17 +144,16 @@ class FastSpeech(dg.Layer):
filter_size=cfg.duration_predictor_filter_size,
dropout=cfg.dropout)
self.decoder = Decoder(len_max_seq=cfg.max_sep_len,
d_word_vec=cfg.fs_embedding_size,
n_layers=cfg.decoder_n_layer,
n_head=cfg.decoder_head,
d_k=64,
d_v=64,
d_k=cfg.fs_hidden_size // cfg.decoder_head,
d_v=cfg.fs_hidden_size // cfg.decoder_head,
d_model=cfg.fs_hidden_size,
d_inner=cfg.decoder_conv1d_filter_size,
fft_conv1d_kernel=cfg.fft_conv1d_filter,
fft_conv1d_padding=cfg.fft_conv1d_padding,
dropout=0.1)
self.mel_linear = dg.Linear(cfg.fs_hidden_size, cfg.audio.num_mels * cfg.audio.outputs_per_step)
self.mel_linear = Linear(cfg.fs_hidden_size, cfg.audio.num_mels * cfg.audio.outputs_per_step)
self.postnet = PostConvNet(n_mels=cfg.audio.num_mels,
num_hidden=512,
filter_size=5,

View File

@ -22,8 +22,6 @@ def add_config_options_to_parser(parser):
parser.add_argument('--audio.outputs_per_step', type=int, default=1,
help="the outputs per step.")
parser.add_argument('--fs_embedding_size', type=int, default=256,
help="the dim size of embedding of fastspeech.")
parser.add_argument('--encoder_n_layer', type=int, default=6,
help="the number of FFT Block in encoder.")
parser.add_argument('--encoder_head', type=int, default=2,

View File

@ -55,14 +55,13 @@ def main(cfg):
writer = SummaryWriter(path) if local_rank == 0 else None
with dg.guard(place):
transformerTTS = TransformerTTS(cfg)
model_path = os.path.join(cfg.transtts_path, "transformer")
model_dict, _ = fluid.dygraph.load_dygraph(os.path.join(model_path, str(cfg.transformer_step)))
#for param in transformerTTS.state_dict():
# print(param)
transformerTTS.set_dict(model_dict)
transformerTTS.eval()
with fluid.unique_name.guard():
transformerTTS = TransformerTTS(cfg)
model_path = os.path.join(cfg.transtts_path, "transformer")
model_dict, _ = fluid.dygraph.load_dygraph(os.path.join(model_path, str(cfg.transformer_step)))
transformerTTS.set_dict(model_dict)
transformerTTS.eval()
model = FastSpeech(cfg)
model.train()
@ -89,7 +88,6 @@ def main(cfg):
_, _, attn_probs, _, _, _ = transformerTTS(character, mel_input, pos_text, pos_mel)
alignment = dg.to_variable(get_alignment(attn_probs, cfg.transformer_head)).astype(np.float32)
global_step += 1
#Forward
@ -104,8 +102,7 @@ def main(cfg):
total_loss = mel_loss + mel_postnet_loss + duration_loss
if local_rank==0:
print('epoch:{}, step:{}, mel_loss:{}, mel_postnet_loss:{}, duration_loss:{}'.format(epoch, global_step, mel_loss.numpy(), mel_postnet_loss.numpy(), duration_loss.numpy()))
#print('epoch:{}, step:{}, mel_loss:{}, mel_postnet_loss:{}, duration_loss:{}'.format(epoch, global_step, mel_loss.numpy(), mel_postnet_loss.numpy(), duration_loss.numpy()))
writer.add_scalar('mel_loss', mel_loss.numpy(), global_step)
writer.add_scalar('post_mel_loss', mel_postnet_loss.numpy(), global_step)
writer.add_scalar('duration_loss', duration_loss.numpy(), global_step)

View File

@ -11,8 +11,8 @@ audio:
outputs_per_step: 1
max_len: 50
transformer_step: 1
postnet_step: 1
transformer_step: 10
postnet_step: 10
use_gpu: True
checkpoint_path: ./checkpoint

View File

@ -18,9 +18,9 @@ grad_clip_thresh: 1.0
batch_size: 32
epochs: 10000
lr: 0.001
save_step: 500
save_step: 10
use_gpu: True
use_data_parallel: True
use_data_parallel: False
data_path: ../../../dataset/LJSpeech-1.1
save_path: ./checkpoint

View File

@ -35,7 +35,7 @@ class EncoderPrenet(dg.Layer):
self.add_sublayer("conv_list_{}".format(i), layer)
self.batch_norm_list = [dg.BatchNorm(num_hidden,
data_layout='NCHW', epsilon=1e-30) for _ in range(3)]
data_layout='NCHW') for _ in range(3)]
for i, layer in enumerate(self.batch_norm_list):
self.add_sublayer("batch_norm_list_{}".format(i), layer)
@ -57,6 +57,7 @@ class CBHG(dg.Layer):
super(CBHG, self).__init__()
"""
:param hidden_size: dimension of hidden unit
:param batch_size: batch size
:param K: # of convolution banks
:param projection_size: dimension of projection unit
:param num_gru_layers: # of layers of GRUcell

View File

@ -10,7 +10,7 @@ from parakeet.modules.post_convnet import PostConvNet
class Encoder(dg.Layer):
def __init__(self, embedding_size, num_hidden, config):
def __init__(self, embedding_size, num_hidden, config, num_head=4):
super(Encoder, self).__init__()
self.num_hidden = num_hidden
param = fluid.ParamAttr(initializer=fluid.initializer.Constant(value=1.0))
@ -24,10 +24,10 @@ class Encoder(dg.Layer):
self.encoder_prenet = EncoderPrenet(embedding_size = embedding_size,
num_hidden = num_hidden,
use_cudnn=config.use_gpu)
self.layers = [MultiheadAttention(num_hidden, num_hidden//4, num_hidden//4) for _ in range(3)]
self.layers = [MultiheadAttention(num_hidden, num_hidden//num_head, num_hidden//num_head) for _ in range(3)]
for i, layer in enumerate(self.layers):
self.add_sublayer("self_attn_{}".format(i), layer)
self.ffns = [PositionwiseFeedForward(num_hidden, num_hidden*4, filter_size=1, use_cudnn = config.use_gpu) for _ in range(3)]
self.ffns = [PositionwiseFeedForward(num_hidden, num_hidden*num_head, filter_size=1, use_cudnn = config.use_gpu) for _ in range(3)]
for i, layer in enumerate(self.ffns):
self.add_sublayer("ffns_{}".format(i), layer)
@ -61,7 +61,7 @@ class Encoder(dg.Layer):
return x, query_mask, attentions
class Decoder(dg.Layer):
def __init__(self, num_hidden, config):
def __init__(self, num_hidden, config, num_head=4):
super(Decoder, self).__init__()
self.num_hidden = num_hidden
param = fluid.ParamAttr()
@ -79,13 +79,13 @@ class Decoder(dg.Layer):
dropout_rate=0.2)
self.linear = Linear(num_hidden, num_hidden)
self.selfattn_layers = [MultiheadAttention(num_hidden, num_hidden//4, num_hidden//4) for _ in range(3)]
self.selfattn_layers = [MultiheadAttention(num_hidden, num_hidden//num_head, num_hidden//num_head) for _ in range(3)]
for i, layer in enumerate(self.selfattn_layers):
self.add_sublayer("self_attn_{}".format(i), layer)
self.attn_layers = [MultiheadAttention(num_hidden, num_hidden//4, num_hidden//4) for _ in range(3)]
self.attn_layers = [MultiheadAttention(num_hidden, num_hidden//num_head, num_hidden//num_head) for _ in range(3)]
for i, layer in enumerate(self.attn_layers):
self.add_sublayer("attn_{}".format(i), layer)
self.ffns = [PositionwiseFeedForward(num_hidden, num_hidden*4, filter_size=1) for _ in range(3)]
self.ffns = [PositionwiseFeedForward(num_hidden, num_hidden*num_head, filter_size=1) for _ in range(3)]
for i, layer in enumerate(self.ffns):
self.add_sublayer("ffns_{}".format(i), layer)
self.mel_linear = Linear(num_hidden, config.audio.num_mels * config.audio.outputs_per_step)

View File

@ -28,12 +28,15 @@ def synthesis(text_input, cfg):
writer = SummaryWriter(path)
with dg.guard(place):
model = TransformerTTS(cfg)
model_postnet = ModelPostNet(cfg)
model.set_dict(load_checkpoint(str(cfg.transformer_step), os.path.join(cfg.checkpoint_path, "transformer")))
model_postnet.set_dict(load_checkpoint(str(cfg.postnet_step), os.path.join(cfg.checkpoint_path, "postnet")))
with fluid.unique_name.guard():
model = TransformerTTS(cfg)
model.set_dict(load_checkpoint(str(cfg.transformer_step), os.path.join(cfg.checkpoint_path, "transformer")))
model.eval()
with fluid.unique_name.guard():
model_postnet = ModelPostNet(cfg)
model_postnet.set_dict(load_checkpoint(str(cfg.postnet_step), os.path.join(cfg.checkpoint_path, "postnet")))
model_postnet.eval()
# init input
text = np.asarray(text_to_sequence(text_input))
text = fluid.layers.unsqueeze(dg.to_variable(text),[0])
@ -42,9 +45,6 @@ def synthesis(text_input, cfg):
pos_text = fluid.layers.unsqueeze(dg.to_variable(pos_text),[0])
model.eval()
model_postnet.eval()
pbar = tqdm(range(cfg.max_len))
for i in pbar:

View File

@ -86,17 +86,17 @@ def main(cfg):
mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(character, mel_input, pos_text, pos_mel)
label = np.zeros(stop_preds.shape).astype(np.float32)
text_length = text_length.numpy()
for i in range(label.shape[0]):
label[i][text_length[i] - 1] = 1
label = (pos_mel == 0).astype(np.float32)
#label = np.zeros(stop_preds.shape).astype(np.float32)
#text_length = text_length.numpy()
#for i in range(label.shape[0]):
# label[i][text_length[i] - 1] = 1
mel_loss = layers.mean(layers.abs(layers.elementwise_sub(mel_pred, mel)))
post_mel_loss = layers.mean(layers.abs(layers.elementwise_sub(postnet_pred, mel)))
stop_loss = cross_entropy(stop_preds, dg.to_variable(label))
stop_loss = cross_entropy(stop_preds, label)
loss = mel_loss + post_mel_loss + stop_loss
if local_rank==0:
writer.add_scalars('training_loss', {
'mel_loss':mel_loss.numpy(),

View File

@ -105,7 +105,6 @@ class MultiheadAttention(dg.Layer):
# concat all multihead result
result = layers.reshape(result, [self.num_head, batch_size, seq_len_query, self.d_q])
result = layers.reshape(layers.transpose(result, [1,2,0,3]),[batch_size, seq_len_query, -1])
result = layers.concat([query_input,result], axis=-1)
result = layers.dropout(self.fc(result), self.dropout)
result = result + query_input

View File

@ -65,9 +65,10 @@ def guided_attention(N, T, g=0.2):
return W
def cross_entropy(input, label, position_weight=5.0, epsilon=0.0001):
input = -1 * label * layers.log(input + epsilon) - (1-label) * layers.log(1 - input + epsilon)
label = input * (label * (position_weight - 1) + 1)
return layers.reduce_sum(label, dim=[0, 1])
def cross_entropy(input, label, position_weight=1.0, epsilon=1e-30):
output = -1 * label * layers.log(input + epsilon) - (1-label) * layers.log(1 - input + epsilon)
output = output * (label * (position_weight - 1) + 1)
return layers.reduce_sum(output, dim=[0, 1])