Merge pull request #72 from iclementine/example_readme
add README for transformer_tts, waveflow and wavenet
This commit is contained in:
commit
737b09d03c
|
@ -0,0 +1,48 @@
|
||||||
|
# TransformerTTS with LJSpeech
|
||||||
|
|
||||||
|
## Dataset
|
||||||
|
|
||||||
|
### Download the datasaet.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
wget https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2
|
||||||
|
```
|
||||||
|
|
||||||
|
### Extract the dataset.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
tar xjvf LJSpeech-1.1.tar.bz2
|
||||||
|
```
|
||||||
|
|
||||||
|
### Preprocess the dataset.
|
||||||
|
|
||||||
|
Assume the path to save the preprocessed dataset is `ljspeech_transformer_tts`. Run the command below to preprocess the dataset.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python preprocess.py --input=LJSpeech-1.1/ --output=ljspeech_transformer_tts
|
||||||
|
```
|
||||||
|
|
||||||
|
## Train the model
|
||||||
|
|
||||||
|
The training script requires 4 command line arguments.
|
||||||
|
`--data` is the path of the training dataset, `--output` is the path of the output direcctory (we recommend to use a subdirectory in `runs` to manage different experiments.)
|
||||||
|
|
||||||
|
`--device` should be "cpu" or "gpu", `--nprocs` is the number of processes to train the model in parallel.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python train.py --data=ljspeech_transformer_tts/ --output=runs/test --device="gpu" --nprocs=1
|
||||||
|
```
|
||||||
|
|
||||||
|
If you want distributed training, set a larger `--nprocs` (e.g. 4). Note that distributed training with cpu is not supported yet.
|
||||||
|
|
||||||
|
## Synthesize
|
||||||
|
|
||||||
|
Synthesize waveform. We assume the `--input` is a text file, one sentence per line, and `--output` is a directory to save the synthesized mel spectrogram(log magnitude) in `.npy` format. The mel spectrograms can be used with `Waveflow` to generate waveforms.
|
||||||
|
|
||||||
|
`--checkpoint_path` should be the path of the parameter file (`.pdparams`) to load. Note that the extention name `.pdparmas` is not included here.
|
||||||
|
|
||||||
|
`--device` specifies to device to run synthesis on.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python synthesize.py --input=sentence.txt --output=mels/ --checkpoint_path='step-310000' --device="gpu" --verbose
|
||||||
|
```
|
|
@ -0,0 +1,48 @@
|
||||||
|
# WaveFlow with LJSpeech
|
||||||
|
|
||||||
|
## Dataset
|
||||||
|
|
||||||
|
### Download the datasaet.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
wget https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2
|
||||||
|
```
|
||||||
|
|
||||||
|
### Extract the dataset.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
tar xjvf LJSpeech-1.1.tar.bz2
|
||||||
|
```
|
||||||
|
|
||||||
|
### Preprocess the dataset.
|
||||||
|
|
||||||
|
Assume the path to save the preprocessed dataset is `ljspeech_waveflow`. Run the command below to preprocess the dataset.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python preprocess.py --input=LJSpeech-1.1/ --output=ljspeech_waveflow
|
||||||
|
```
|
||||||
|
|
||||||
|
## Train the model
|
||||||
|
|
||||||
|
The training script requires 4 command line arguments.
|
||||||
|
`--data` is the path of the training dataset, `--output` is the path of the output directory (we recommend to use a subdirectory in `runs` to manage different experiments.)
|
||||||
|
|
||||||
|
`--device` should be "cpu" or "gpu", `--nprocs` is the number of processes to train the model in parallel.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python train.py --data=ljspeech_waveflow/ --output=runs/test --device="gpu" --nprocs=1
|
||||||
|
```
|
||||||
|
|
||||||
|
If you want distributed training, set a larger `--nprocs` (e.g. 4). Note that distributed training with cpu is not supported yet.
|
||||||
|
|
||||||
|
## Synthesize
|
||||||
|
|
||||||
|
Synthesize waveform. We assume the `--input` is a directory containing several mel spectrograms(log magnitude) in `.npy` format. The output would be saved in `--output` directory, containing several `.wav` files, each with the same name as the mel spectrogram does.
|
||||||
|
|
||||||
|
`--checkpoint_path` should be the path of the parameter file (`.pdparams`) to load. Note that the extention name `.pdparmas` is not included here.
|
||||||
|
|
||||||
|
`--device` specifies to device to run synthesis on.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python synthesize.py --input=mels/ --output=wavs/ --checkpoint_path='step-2000000' --device="gpu" --verbose
|
||||||
|
```
|
|
@ -0,0 +1,48 @@
|
||||||
|
# WaveNet with LJSpeech
|
||||||
|
|
||||||
|
## Dataset
|
||||||
|
|
||||||
|
### Download the datasaet.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
wget https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2
|
||||||
|
```
|
||||||
|
|
||||||
|
### Extract the dataset.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
tar xjvf LJSpeech-1.1.tar.bz2
|
||||||
|
```
|
||||||
|
|
||||||
|
### Preprocess the dataset.
|
||||||
|
|
||||||
|
Assume the path to save the preprocessed dataset is `ljspeech_wavenet`. Run the command below to preprocess the dataset.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python preprocess.py --input=LJSpeech-1.1/ --output=ljspeech_wavenet
|
||||||
|
```
|
||||||
|
|
||||||
|
## Train the model
|
||||||
|
|
||||||
|
The training script requires 4 command line arguments.
|
||||||
|
`--data` is the path of the training dataset, `--output` is the path of the output directory (we recommend to use a subdirectory in `runs` to manage different experiments.)
|
||||||
|
|
||||||
|
`--device` should be "cpu" or "gpu", `--nprocs` is the number of processes to train the model in parallel.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python train.py --data=ljspeech_wavenet/ --output=runs/test --device="gpu" --nprocs=1
|
||||||
|
```
|
||||||
|
|
||||||
|
If you want distributed training, set a larger `--nprocs` (e.g. 4). Note that distributed training with cpu is not supported yet.
|
||||||
|
|
||||||
|
## Synthesize
|
||||||
|
|
||||||
|
Synthesize waveform. We assume the `--input` is a directory containing several mel spectrograms(normalized into range[0, 1)) in `.npy` format. The output would be saved in `--output` directory, containing several `.wav` files, each with the same name as the mel spectrogram does.
|
||||||
|
|
||||||
|
`--checkpoint_path` should be the path of the parameter file (`.pdparams`) to load. Note that the extention name `.pdparmas` is not included here.
|
||||||
|
|
||||||
|
`--device` specifies to device to run synthesis on. Due to the autoregressiveness of wavenet, using cpu may be faster.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python synthesize.py --input=mels/ --output=wavs/ --checkpoint_path='step-2450000' --device="cpu" --verbose
|
||||||
|
```
|
Loading…
Reference in New Issue