add docstring to pwg
This commit is contained in:
parent
fbc7e51fc9
commit
7ac0d3ce12
|
@ -290,7 +290,7 @@ class ResidualBlock(nn.Layer):
|
|||
x : Tensor
|
||||
Shape (N, C_res, T), the input features.
|
||||
c : Tensor
|
||||
Shape (N, C_aux, T), he auxiliary input.
|
||||
Shape (N, C_aux, T), the auxiliary input.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -525,17 +525,48 @@ class PWGGenerator(nn.Layer):
|
|||
|
||||
|
||||
class PWGDiscriminator(nn.Layer):
|
||||
"""A convolutional discriminator for audio.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
in_channels : int, optional
|
||||
Number of channels of the input audio, by default 1
|
||||
out_channels : int, optional
|
||||
Output feature size, by default 1
|
||||
kernel_size : int, optional
|
||||
Kernel size of convolutional sublayers, by default 3
|
||||
layers : int, optional
|
||||
Number of layers, by default 10
|
||||
conv_channels : int, optional
|
||||
Feature size of the convolutional sublayers, by default 64
|
||||
dilation_factor : int, optional
|
||||
The factor with which dilation of each convolutional sublayers grows
|
||||
exponentially if it is greater than 1, else the dilation of each
|
||||
convolutional sublayers grows linearly, by default 1
|
||||
nonlinear_activation : str, optional
|
||||
The activation after each convolutional sublayer, by default "LeakyReLU"
|
||||
nonlinear_activation_params : Dict[str, Any], optional
|
||||
The parameters passed to the activation's initializer, by default
|
||||
{"negative_slope": 0.2}
|
||||
bias : bool, optional
|
||||
Whether to use bias in convolutional sublayers, by default True
|
||||
use_weight_norm : bool, optional
|
||||
Whether to use weight normalization at all convolutional sublayers,
|
||||
by default True
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels=1,
|
||||
out_channels=1,
|
||||
kernel_size=3,
|
||||
layers=10,
|
||||
conv_channels=64,
|
||||
dilation_factor=1,
|
||||
nonlinear_activation="LeakyReLU",
|
||||
nonlinear_activation_params={"negative_slope": 0.2},
|
||||
bias=True,
|
||||
use_weight_norm=True):
|
||||
in_channels: int=1,
|
||||
out_channels: int=1,
|
||||
kernel_size: int=3,
|
||||
layers: int=10,
|
||||
conv_channels: int=64,
|
||||
dilation_factor: int=1,
|
||||
nonlinear_activation: str="LeakyReLU",
|
||||
nonlinear_activation_params: Dict[
|
||||
str, Any]={"negative_slope": 0.2},
|
||||
bias: bool=True,
|
||||
use_weight_norm: bool=True):
|
||||
super().__init__()
|
||||
assert kernel_size % 2 == 1
|
||||
assert dilation_factor > 0
|
||||
|
@ -572,7 +603,18 @@ class PWGDiscriminator(nn.Layer):
|
|||
if use_weight_norm:
|
||||
self.apply_weight_norm()
|
||||
|
||||
def forward(self, x):
|
||||
def forward(self, x: Tensor):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
x : Tensor
|
||||
Shape (N, in_channels, T), the input audio.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Tensor
|
||||
Shape (N, out_channels, T), the predicted logits.
|
||||
"""
|
||||
return self.conv_layers(x)
|
||||
|
||||
def apply_weight_norm(self):
|
||||
|
|
Loading…
Reference in New Issue