add conv1d, conv1dcell, conv1d_transpose in to customized layers

This commit is contained in:
chenfeiyu 2020-02-11 06:49:32 +00:00
parent fd9e198ab6
commit 907f777ab8
1 changed files with 157 additions and 0 deletions

View File

@ -0,0 +1,157 @@
from paddle import fluid
import paddle.fluid.layers as F
import paddle.fluid.dygraph as dg
class Conv1D(dg.Conv2D):
"""A standard Conv1D layer that use (B, C, T) data layout. It inherit Conv2D and
use (B, C, 1, T) data layout to compute 1D convolution. Nothing more.
NOTE: we inherit Conv2D instead of encapsulate a Conv2D layer to make it a simple
layer, instead of a complex one. So we can easily apply weight norm to it.
"""
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
padding=0,
dilation=1,
groups=None,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
dtype='float32'):
super(Conv1D, self).__init__(num_channels,
num_filters, (1, filter_size),
stride=(1, stride),
padding=(0, padding),
dilation=(1, dilation),
groups=groups,
param_attr=param_attr,
bias_attr=bias_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
def forward(self, x):
x = F.unsqueeze(x, [2])
x = super(Conv1D, self).forward(x) # maybe risky here
x = F.squeeze(x, [2])
return x
class Conv1DTranspose(dg.Conv2DTranspose):
def __init__(self,
num_channels,
num_filters,
filter_size,
padding=0,
stride=1,
dilation=1,
groups=None,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
dtype='float32'):
super(Conv1DTranspose, self).__init__(num_channels,
num_filters, (1, filter_size),
output_size=None,
padding=(0, padding),
stride=(1, stride),
dilation=(1, dilation),
groups=groups,
param_attr=param_attr,
bias_attr=bias_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
def forward(self, x):
x = F.unsqueeze(x, [2])
x = super(Conv1DTranspose, self).forward(x) # maybe risky here
x = F.squeeze(x, [2])
return x
class Conv1DCell(Conv1D):
"""A causal convolve-1d cell. It uses causal padding, padding(receptive_field -1, 0).
But Conv2D in dygraph does not support asymmetric padding yet, we just pad
(receptive_field -1, receptive_field -1) and drop last receptive_field -1 steps in
the output.
It is a cell that it acts like an RNN cell. It does not support stride > 1, and it
ensures 1-to-1 mapping from input time steps to output timesteps.
"""
def __init__(self,
num_channels,
num_filters,
filter_size,
dilation=1,
causal=False,
groups=None,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
dtype='float32'):
receptive_field = 1 + dilation * (filter_size - 1)
padding = receptive_field - 1 if causal else receptive_field // 2
self._receptive_field = receptive_field
self.causal = causal
super(Conv1DCell, self).__init__(num_channels,
num_filters,
filter_size,
stride=1,
padding=padding,
dilation=dilation,
groups=groups,
param_attr=param_attr,
bias_attr=bias_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
def forward(self, x):
# it ensures that ouput time steps == input time steps
time_steps = x.shape[-1]
x = super(Conv1DCell, self).forward(x)
if x.shape[-1] != time_steps:
x = x[:, :, :time_steps]
return x
@property
def receptive_field(self):
return self._receptive_field
def start_sequence(self):
if not self.causal:
raise ValueError(
"Only causal conv1d shell should use start sequence")
if self.receptive_field == 1:
raise ValueError(
"Convolution block with receptive field = 1 does not need"
" to be implemented as a Conv1DCell. Conv1D suffices")
self._buffer = None
self._reshaped_weight = F.reshape(self.weight, (self._num_filters, -1))
def add_input(self, x_t):
batch_size, c_in, _ = x_t.shape
if self._buffer is None:
self._buffer = F.zeros((batch_size, c_in, self.receptive_field),
dtype=x_t.dtype)
self._buffer = F.concat([self._buffer[:, :, 1:], x_t], -1)
if self._dilation[1] > 1:
input = F.strided_slice(self._buffer,
axes=[2],
starts=[0],
ends=[self.receptive_field],
strides=[self._dilation[1]])
else:
input = self._buffer
input = F.reshape(input, (batch_size, -1))
y_t = F.matmul(input, self._reshaped_weight, transpose_y=True)
y_t = y_t + self.bias
y_t = F.unsqueeze(y_t, [-1])
return y_t