Remove unused modules.py

This commit is contained in:
liuyibing01 2020-02-24 09:49:10 +00:00
parent 25883dcd3e
commit ac437a080a
1 changed files with 0 additions and 612 deletions

View File

@ -1,612 +0,0 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import fluid
import paddle.fluid.dygraph as dg
import numpy as np
from . import conv
from . import weight_norm
def FC(name_scope,
in_features,
size,
num_flatten_dims=1,
relu=False,
dropout=0.0,
epsilon=1e-30,
act=None,
is_test=False,
dtype="float32"):
"""
A special Linear Layer, when it is used with dropout, the weight is
initialized as normal(0, std=np.sqrt((1-dropout) / in_features))
"""
# stds
if isinstance(in_features, int):
in_features = [in_features]
stds = [np.sqrt((1 - dropout) / in_feature) for in_feature in in_features]
if relu:
stds = [std * np.sqrt(2.0) for std in stds]
weight_inits = [
fluid.initializer.NormalInitializer(scale=std) for std in stds
]
bias_init = fluid.initializer.ConstantInitializer(0.0)
# param attrs
weight_attrs = [fluid.ParamAttr(initializer=init) for init in weight_inits]
bias_attr = fluid.ParamAttr(initializer=bias_init)
layer = weight_norm.FC(name_scope,
size,
num_flatten_dims=num_flatten_dims,
param_attr=weight_attrs,
bias_attr=bias_attr,
act=act,
dtype=dtype)
return layer
def Conv1D(name_scope,
in_channels,
num_filters,
filter_size=3,
dilation=1,
groups=None,
causal=False,
std_mul=1.0,
dropout=0.0,
use_cudnn=True,
act=None,
dtype="float32"):
"""
A special Conv1D Layer, when it is used with dropout, the weight is
initialized as
normal(0, std=np.sqrt(std_mul * (1-dropout) / (filter_size * in_features)))
"""
# std
std = np.sqrt((std_mul * (1 - dropout)) / (filter_size * in_channels))
weight_init = fluid.initializer.NormalInitializer(loc=0.0, scale=std)
bias_init = fluid.initializer.ConstantInitializer(0.0)
# param attrs
weight_attr = fluid.ParamAttr(initializer=weight_init)
bias_attr = fluid.ParamAttr(initializer=bias_init)
layer = conv.Conv1D(
name_scope,
in_channels,
num_filters,
filter_size,
dilation,
groups=groups,
causal=causal,
param_attr=weight_attr,
bias_attr=bias_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
return layer
def Embedding(name_scope,
num_embeddings,
embed_dim,
is_sparse=False,
is_distributed=False,
padding_idx=None,
std=0.01,
dtype="float32"):
# param attrs
weight_attr = fluid.ParamAttr(initializer=fluid.initializer.Normal(
scale=std))
layer = dg.Embedding(
name_scope, (num_embeddings, embed_dim),
padding_idx=padding_idx,
param_attr=weight_attr,
dtype=dtype)
return layer
class Conv1DGLU(dg.Layer):
"""
A Convolution 1D block with GLU activation. It also applys dropout for the
input x. It fuses speaker embeddings through a FC activated by softsign. It
has residual connection from the input x, and scale the output by
np.sqrt(0.5).
"""
def __init__(self,
name_scope,
n_speakers,
speaker_dim,
in_channels,
num_filters,
filter_size,
dilation,
std_mul=4.0,
dropout=0.0,
causal=False,
residual=True,
dtype="float32"):
super(Conv1DGLU, self).__init__(name_scope, dtype=dtype)
# conv spec
self.in_channels = in_channels
self.n_speakers = n_speakers
self.speaker_dim = speaker_dim
self.num_filters = num_filters
self.filter_size = filter_size
self.dilation = dilation
self.causal = causal
self.residual = residual
# weight init and dropout
self.std_mul = std_mul
self.dropout = dropout
if residual:
assert (
in_channels == num_filters
), "this block uses residual connection"\
"the input_channes should equals num_filters"
self.conv = Conv1D(
self.full_name(),
in_channels,
2 * num_filters,
filter_size,
dilation,
causal=causal,
std_mul=std_mul,
dropout=dropout,
dtype=dtype)
if n_speakers > 1:
assert (speaker_dim is not None
), "speaker embed should not be null in multi-speaker case"
self.fc = Conv1D(
self.full_name(),
speaker_dim,
num_filters,
filter_size=1,
dilation=1,
causal=False,
act="softsign",
dtype=dtype)
def forward(self, x, speaker_embed_bc1t=None):
"""
Args:
x (Variable): Shape(B, C_in, 1, T), the input of Conv1DGLU
layer, where B means batch_size, C_in means the input channels
T means input time steps.
speaker_embed_bct1 (Variable): Shape(B, C_sp, 1, T), expanded
speaker embed, where C_sp means speaker embedding size. Note
that when using residual connection, the Conv1DGLU does not
change the number of channels, so out channels equals input
channels.
Returns:
x (Variable): Shape(B, C_out, 1, T), the output of Conv1DGLU, where
C_out means the output channels of Conv1DGLU.
"""
residual = x
x = fluid.layers.dropout(
x, self.dropout, dropout_implementation="upscale_in_train")
x = self.conv(x)
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
if speaker_embed_bc1t is not None:
sp = self.fc(speaker_embed_bc1t)
content = content + sp
# glu
x = fluid.layers.elementwise_mul(fluid.layers.sigmoid(gate), content)
if self.residual:
x = fluid.layers.scale(x + residual, np.sqrt(0.5))
return x
def add_input(self, x, speaker_embed_bc11=None):
"""
Inputs:
x: shape(B, num_filters, 1, time_steps)
speaker_embed_bc11: shape(B, speaker_dim, 1, time_steps)
Outputs:
out: shape(B, num_filters, 1, time_steps), where time_steps = 1
"""
residual = x
# add step input and produce step output
x = fluid.layers.dropout(
x, self.dropout, dropout_implementation="upscale_in_train")
x = self.conv.add_input(x)
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
if speaker_embed_bc11 is not None:
sp = self.fc(speaker_embed_bc11)
content = content + sp
x = fluid.layers.elementwise_mul(fluid.layers.sigmoid(gate), content)
if self.residual:
x = fluid.layers.scale(x + residual, np.sqrt(0.5))
return x
def Conv1DTranspose(name_scope,
in_channels,
num_filters,
filter_size,
padding=0,
stride=1,
dilation=1,
groups=None,
std_mul=1.0,
dropout=0.0,
use_cudnn=True,
act=None,
dtype="float32"):
std = np.sqrt(std_mul * (1 - dropout) / (in_channels * filter_size))
weight_init = fluid.initializer.NormalInitializer(scale=std)
weight_attr = fluid.ParamAttr(initializer=weight_init)
bias_init = fluid.initializer.ConstantInitializer(0.0)
bias_attr = fluid.ParamAttr(initializer=bias_init)
layer = conv.Conv1DTranspose(
name_scope,
in_channels,
num_filters,
filter_size,
padding=padding,
stride=stride,
dilation=dilation,
groups=groups,
param_attr=weight_attr,
bias_attr=bias_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
return layer
def compute_position_embedding(rad):
# rad is a transposed radius, shape(embed_dim, n_vocab)
embed_dim, n_vocab = rad.shape
even_dims = dg.to_variable(np.arange(0, embed_dim, 2).astype("int32"))
odd_dims = dg.to_variable(np.arange(1, embed_dim, 2).astype("int32"))
even_rads = fluid.layers.gather(rad, even_dims)
odd_rads = fluid.layers.gather(rad, odd_dims)
sines = fluid.layers.sin(even_rads)
cosines = fluid.layers.cos(odd_rads)
temp = fluid.layers.scatter(rad, even_dims, sines)
out = fluid.layers.scatter(temp, odd_dims, cosines)
out = fluid.layers.transpose(out, perm=[1, 0])
return out
def position_encoding_init(n_position,
d_pos_vec,
position_rate=1.0,
sinusoidal=True):
""" Init the sinusoid position encoding table """
# keep idx 0 for padding token position encoding zero vector
position_enc = np.array([[
position_rate * pos / np.power(10000, 2 * (i // 2) / d_pos_vec)
for i in range(d_pos_vec)
] if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)])
if sinusoidal:
position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2]) # dim 2i
position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2]) # dim 2i+1
return position_enc
class PositionEmbedding(dg.Layer):
def __init__(self,
name_scope,
n_position,
d_pos_vec,
position_rate=1.0,
is_sparse=False,
is_distributed=False,
param_attr=None,
max_norm=None,
padding_idx=None,
dtype="float32"):
super(PositionEmbedding, self).__init__(name_scope, dtype=dtype)
self.embed = dg.Embedding(
self.full_name(),
size=(n_position, d_pos_vec),
is_sparse=is_sparse,
is_distributed=is_distributed,
padding_idx=None,
param_attr=param_attr,
dtype=dtype)
self.set_weight(
position_encoding_init(
n_position,
d_pos_vec,
position_rate=position_rate,
sinusoidal=False).astype(dtype))
self._is_sparse = is_sparse
self._is_distributed = is_distributed
self._remote_prefetch = self._is_sparse and (not self._is_distributed)
if self._remote_prefetch:
assert self._is_sparse is True and self._is_distributed is False
self._padding_idx = (-1 if padding_idx is None else padding_idx if
padding_idx >= 0 else (n_position + padding_idx))
self._position_rate = position_rate
self._max_norm = max_norm
self._dtype = dtype
def set_weight(self, array):
assert self.embed._w.shape == list(array.shape), "shape does not match"
self.embed._w._ivar.value().get_tensor().set(
array, fluid.framework._current_expected_place())
def forward(self, indices, speaker_position_rate=None):
"""
Args:
indices (Variable): Shape (B, T, 1), dtype: int64, position
indices, where B means the batch size, T means the time steps.
speaker_position_rate (Variable | float, optional), position
rate. It can be a float point number or a Variable with
shape (1,), then this speaker_position_rate is used for every
example. It can also be a Variable with shape (B, 1), which
contains a speaker position rate for each speaker.
Returns:
out (Variable): Shape(B, C_pos), position embedding, where C_pos
means position embedding size.
"""
rad = fluid.layers.transpose(self.embed._w, perm=[1, 0])
batch_size = indices.shape[0]
if speaker_position_rate is None:
weight = compute_position_embedding(rad)
out = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type="lookup_table",
inputs={"Ids": indices,
"W": weight},
outputs={"Out": out},
attrs={
"is_sparse": self._is_sparse,
"is_distributed": self._is_distributed,
"remote_prefetch": self._remote_prefetch,
"padding_idx":
self._padding_idx, # special value for lookup table op
})
return out
elif (np.isscalar(speaker_position_rate) or
isinstance(speaker_position_rate, fluid.framework.Variable) and
speaker_position_rate.shape == [1, 1]):
# # make a weight
# scale the weight (the operand for sin & cos)
if np.isscalar(speaker_position_rate):
scaled_rad = fluid.layers.scale(rad, speaker_position_rate)
else:
scaled_rad = fluid.layers.elementwise_mul(
rad, speaker_position_rate[0])
weight = compute_position_embedding(scaled_rad)
out = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type="lookup_table",
inputs={"Ids": indices,
"W": weight},
outputs={"Out": out},
attrs={
"is_sparse": self._is_sparse,
"is_distributed": self._is_distributed,
"remote_prefetch": self._remote_prefetch,
"padding_idx":
self._padding_idx, # special value for lookup table op
})
return out
elif np.prod(speaker_position_rate.shape) > 1:
assert speaker_position_rate.shape == [batch_size, 1]
outputs = []
for i in range(batch_size):
rate = speaker_position_rate[i] # rate has shape [1]
scaled_rad = fluid.layers.elementwise_mul(rad, rate)
weight = compute_position_embedding(scaled_rad)
out = self._helper.create_variable_for_type_inference(
self._dtype)
sequence = indices[i]
self._helper.append_op(
type="lookup_table",
inputs={"Ids": sequence,
"W": weight},
outputs={"Out": out},
attrs={
"is_sparse": self._is_sparse,
"is_distributed": self._is_distributed,
"remote_prefetch": self._remote_prefetch,
"padding_idx": -1,
})
outputs.append(out)
out = fluid.layers.stack(outputs)
return out
else:
raise Exception("Then you can just use position rate at init")
class Conv1D_GU(dg.Layer):
def __init__(self,
name_scope,
conditioner_dim,
in_channels,
num_filters,
filter_size,
dilation,
causal=False,
residual=True,
dtype="float32"):
super(Conv1D_GU, self).__init__(name_scope, dtype=dtype)
self.conditioner_dim = conditioner_dim
self.in_channels = in_channels
self.num_filters = num_filters
self.filter_size = filter_size
self.dilation = dilation
self.causal = causal
self.residual = residual
if residual:
assert (
in_channels == num_filters
), "this block uses residual connection"\
"the input_channels should equals num_filters"
self.conv = Conv1D(
self.full_name(),
in_channels,
2 * num_filters,
filter_size,
dilation,
causal=causal,
dtype=dtype)
self.fc = Conv1D(
self.full_name(),
conditioner_dim,
2 * num_filters,
filter_size=1,
dilation=1,
causal=False,
dtype=dtype)
def forward(self, x, skip=None, conditioner=None):
"""
Args:
x (Variable): Shape(B, C_in, 1, T), the input of Conv1D_GU
layer, where B means batch_size, C_in means the input channels
T means input time steps.
skip (Variable): Shape(B, C_in, 1, T), skip connection.
conditioner (Variable): Shape(B, C_con, 1, T), expanded mel
conditioner, where C_con is conditioner hidden dim which
equals the num of mel bands. Note that when using residual
connection, the Conv1D_GU does not change the number of
channels, so out channels equals input channels.
Returns:
x (Variable): Shape(B, C_out, 1, T), the output of Conv1D_GU, where
C_out means the output channels of Conv1D_GU.
skip (Variable): Shape(B, C_out, 1, T), skip connection.
"""
residual = x
x = self.conv(x)
if conditioner is not None:
cond_bias = self.fc(conditioner)
x += cond_bias
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
# Gated Unit.
x = fluid.layers.elementwise_mul(fluid.layers.sigmoid(gate),
fluid.layers.tanh(content))
if skip is None:
skip = x
else:
skip = fluid.layers.scale(skip + x, np.sqrt(0.5))
if self.residual:
x = fluid.layers.scale(residual + x, np.sqrt(0.5))
return x, skip
def add_input(self, x, skip=None, conditioner=None):
"""
Inputs:
x: shape(B, num_filters, 1, time_steps)
skip: shape(B, num_filters, 1, time_steps), skip connection
conditioner: shape(B, conditioner_dim, 1, time_steps)
Outputs:
x: shape(B, num_filters, 1, time_steps), where time_steps = 1
skip: skip connection, same shape as x
"""
residual = x
# add step input and produce step output
x = self.conv.add_input(x)
if conditioner is not None:
cond_bias = self.fc(conditioner)
x += cond_bias
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
# Gated Unit.
x = fluid.layers.elementwise_mul(fluid.layers.sigmoid(gate),
fluid.layers.tanh(content))
if skip is None:
skip = x
else:
skip = fluid.layers.scale(skip + x, np.sqrt(0.5))
if self.residual:
x = fluid.layers.scale(residual + x, np.sqrt(0.5))
return x, skip
def Conv2DTranspose(name_scope,
num_filters,
filter_size,
padding=0,
stride=1,
dilation=1,
use_cudnn=True,
act=None,
dtype="float32"):
val = 1.0 / (filter_size[0] * filter_size[1])
weight_init = fluid.initializer.ConstantInitializer(val)
weight_attr = fluid.ParamAttr(initializer=weight_init)
layer = weight_norm.Conv2DTranspose(
name_scope,
num_filters,
filter_size=filter_size,
padding=padding,
stride=stride,
dilation=dilation,
param_attr=weight_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
return layer