working integraton with parakeet
This commit is contained in:
parent
8c36f4539c
commit
b15c313423
|
@ -129,4 +129,10 @@ venv.bak/
|
|||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
.pyre/
|
||||
|
||||
# Shell, vim, and output folder
|
||||
*.sh
|
||||
*.swp
|
||||
runs
|
||||
syn_audios
|
||||
|
|
|
@ -31,6 +31,9 @@ class DataCargo(object):
|
|||
|
||||
def __iter__(self):
|
||||
return DataIterator(self)
|
||||
|
||||
def __call__(self):
|
||||
return DataIterator(self)
|
||||
|
||||
@property
|
||||
def _auto_collation(self):
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
# WaveNet-Paddle
|
|
@ -0,0 +1,32 @@
|
|||
valid_size: 16
|
||||
train_clip_second: 0.5
|
||||
sample_rate: 22050
|
||||
fft_window_shift: 256
|
||||
fft_window_size: 1024
|
||||
fft_size: 2048
|
||||
mel_bands: 80
|
||||
|
||||
seed: 1
|
||||
batch_size: 8
|
||||
test_every: 2000
|
||||
save_every: 10000
|
||||
max_iterations: 2000000
|
||||
|
||||
layers: 30
|
||||
kernel_width: 2
|
||||
dilation_block: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
|
||||
residual_channels: 128
|
||||
skip_channels: 128
|
||||
loss_type: mix-gaussian-pdf
|
||||
num_mixtures: 1
|
||||
log_scale_min: -9.0
|
||||
|
||||
conditioner:
|
||||
filter_sizes: [[32, 3], [32, 3]]
|
||||
upsample_factors: [16, 16]
|
||||
|
||||
learning_rate: 0.001
|
||||
gradient_max_norm: 100.0
|
||||
anneal:
|
||||
every: 200000
|
||||
rate: 0.5
|
|
@ -0,0 +1,191 @@
|
|||
import math
|
||||
import os
|
||||
import random
|
||||
|
||||
import librosa
|
||||
import numpy as np
|
||||
from paddle import fluid
|
||||
|
||||
import utils
|
||||
from parakeet.datasets import ljspeech
|
||||
from parakeet.data import dataset
|
||||
from parakeet.data.sampler import Sampler, BatchSampler, SequentialSampler
|
||||
from parakeet.data.datacargo import DataCargo
|
||||
|
||||
|
||||
class Dataset(ljspeech.LJSpeech):
|
||||
def __init__(self, config):
|
||||
super(Dataset, self).__init__(config.root)
|
||||
self.config = config
|
||||
self.fft_window_shift = config.fft_window_shift
|
||||
# Calculate context frames.
|
||||
frames_per_second = config.sample_rate // self.fft_window_shift
|
||||
train_clip_frames = int(math.ceil(
|
||||
config.train_clip_second * frames_per_second))
|
||||
context_frames = config.context_size // self.fft_window_shift
|
||||
self.num_frames = train_clip_frames + context_frames
|
||||
|
||||
def _get_example(self, metadatum):
|
||||
fname, _, _ = metadatum
|
||||
wav_path = self.root.joinpath("wavs", fname + ".wav")
|
||||
|
||||
config = self.config
|
||||
sr = config.sample_rate
|
||||
fft_window_shift = config.fft_window_shift
|
||||
fft_window_size = config.fft_window_size
|
||||
fft_size = config.fft_size
|
||||
|
||||
audio, loaded_sr = librosa.load(wav_path, sr=None)
|
||||
assert loaded_sr == sr
|
||||
|
||||
# Pad audio to the right size.
|
||||
frames = math.ceil(float(audio.size) / fft_window_shift)
|
||||
fft_padding = (fft_size - fft_window_shift) // 2
|
||||
desired_length = frames * fft_window_shift + fft_padding * 2
|
||||
pad_amount = (desired_length - audio.size) // 2
|
||||
|
||||
if audio.size % 2 == 0:
|
||||
audio = np.pad(audio, (pad_amount, pad_amount), mode='reflect')
|
||||
else:
|
||||
audio = np.pad(audio, (pad_amount, pad_amount + 1), mode='reflect')
|
||||
|
||||
# Normalize audio.
|
||||
audio = audio / np.abs(audio).max() * 0.999
|
||||
|
||||
# Compute mel-spectrogram.
|
||||
# Turn center to False to prevent internal padding.
|
||||
spectrogram = librosa.core.stft(
|
||||
audio, hop_length=fft_window_shift,
|
||||
win_length=fft_window_size, n_fft=fft_size, center=False)
|
||||
spectrogram_magnitude = np.abs(spectrogram)
|
||||
|
||||
# Compute mel-spectrograms.
|
||||
mel_filter_bank = librosa.filters.mel(sr=sr, n_fft=fft_size,
|
||||
n_mels=config.mel_bands)
|
||||
mel_spectrogram = np.dot(mel_filter_bank, spectrogram_magnitude)
|
||||
mel_spectrogram = mel_spectrogram.T
|
||||
|
||||
# Rescale mel_spectrogram.
|
||||
min_level, ref_level = 1e-5, 20
|
||||
mel_spectrogram = 20 * np.log10(np.maximum(min_level, mel_spectrogram))
|
||||
mel_spectrogram = mel_spectrogram - ref_level
|
||||
mel_spectrogram = np.clip((mel_spectrogram + 100) / 100, 0, 1)
|
||||
|
||||
# Extract the center of audio that corresponds to mel spectrograms.
|
||||
audio = audio[fft_padding : -fft_padding]
|
||||
assert mel_spectrogram.shape[0] * fft_window_shift == audio.size
|
||||
|
||||
return audio, mel_spectrogram
|
||||
|
||||
|
||||
class Subset(dataset.Dataset):
|
||||
def __init__(self, dataset, indices, valid):
|
||||
self.dataset = dataset
|
||||
self.indices = indices
|
||||
self.valid = valid
|
||||
|
||||
def __getitem__(self, idx):
|
||||
fft_window_shift = self.dataset.fft_window_shift
|
||||
num_frames = self.dataset.num_frames
|
||||
audio, mel = self.dataset[self.indices[idx]]
|
||||
|
||||
if self.valid:
|
||||
audio_start = 0
|
||||
else:
|
||||
# Randomly crop context + train_clip_second of audio.
|
||||
audio_frames = int(audio.size) // fft_window_shift
|
||||
max_start_frame = audio_frames - num_frames
|
||||
assert max_start_frame >= 0, "audio {} is too short".format(idx)
|
||||
|
||||
frame_start = random.randint(0, max_start_frame)
|
||||
frame_end = frame_start + num_frames
|
||||
|
||||
audio_start = frame_start * fft_window_shift
|
||||
audio_end = frame_end * fft_window_shift
|
||||
|
||||
audio = audio[audio_start : audio_end]
|
||||
|
||||
return audio, mel, audio_start
|
||||
|
||||
def _batch_examples(self, batch):
|
||||
audios = [sample[0] for sample in batch]
|
||||
audio_starts = [sample[2] for sample in batch]
|
||||
|
||||
# mels shape [num_frames, mel_bands]
|
||||
max_frames = max(sample[1].shape[0] for sample in batch)
|
||||
mels = [utils.pad_to_size(sample[1], max_frames) for sample in batch]
|
||||
|
||||
audios = np.array(audios, dtype=np.float32)
|
||||
mels = np.array(mels, dtype=np.float32)
|
||||
audio_starts = np.array(audio_starts, dtype=np.int32)
|
||||
|
||||
return audios, mels, audio_starts
|
||||
|
||||
def __len__(self):
|
||||
return len(self.indices)
|
||||
|
||||
|
||||
class DistributedSampler(Sampler):
|
||||
def __init__(self, dataset_size, num_trainers, rank, shuffle=True):
|
||||
self.dataset_size = dataset_size
|
||||
self.num_trainers = num_trainers
|
||||
self.rank = rank
|
||||
self.num_samples = int(math.ceil(dataset_size / num_trainers))
|
||||
self.total_size = self.num_samples * num_trainers
|
||||
assert self.total_size >= self.dataset_size
|
||||
self.shuffle = shuffle
|
||||
|
||||
def __iter__(self):
|
||||
indices = list(range(self.dataset_size))
|
||||
if self.shuffle:
|
||||
random.shuffle(indices)
|
||||
|
||||
# Append extra samples to make it evenly distributed on all trainers.
|
||||
indices += indices[:(self.total_size - self.dataset_size)]
|
||||
assert len(indices) == self.total_size
|
||||
|
||||
# Subset samples for each trainer.
|
||||
indices = indices[self.rank:self.total_size:self.num_trainers]
|
||||
assert len(indices) == self.num_samples
|
||||
|
||||
return iter(indices)
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples
|
||||
|
||||
|
||||
class LJSpeech:
|
||||
def __init__(self, config, nranks, rank):
|
||||
place = fluid.CUDAPlace(rank) if config.use_gpu else fluid.CPUPlace()
|
||||
|
||||
# Whole LJSpeech dataset.
|
||||
ds = Dataset(config)
|
||||
|
||||
# Split into train and valid dataset.
|
||||
indices = list(range(len(ds)))
|
||||
train_indices = indices[config.valid_size:]
|
||||
valid_indices = indices[:config.valid_size]
|
||||
random.shuffle(train_indices)
|
||||
|
||||
# Train dataset.
|
||||
trainset = Subset(ds, train_indices, valid=False)
|
||||
sampler = DistributedSampler(len(trainset), nranks, rank)
|
||||
total_bs = config.batch_size
|
||||
assert total_bs % nranks == 0
|
||||
train_sampler = BatchSampler(sampler, total_bs // nranks,
|
||||
drop_last=True)
|
||||
trainloader = DataCargo(trainset, batch_sampler=train_sampler)
|
||||
|
||||
trainreader = fluid.io.PyReader(capacity=50, return_list=True)
|
||||
trainreader.decorate_batch_generator(trainloader, place)
|
||||
self.trainloader = (data for _ in iter(int, 1)
|
||||
for data in trainreader())
|
||||
|
||||
# Valid dataset.
|
||||
validset = Subset(ds, valid_indices, valid=True)
|
||||
# Currently only support batch_size = 1 for valid loader.
|
||||
validloader = DataCargo(validset, batch_size=1, shuffle=False)
|
||||
|
||||
validreader = fluid.io.PyReader(capacity=20, return_list=True)
|
||||
validreader.decorate_batch_generator(validloader, place)
|
||||
self.validloader = validreader
|
|
@ -0,0 +1,249 @@
|
|||
import paddle
|
||||
from paddle import fluid
|
||||
import paddle.fluid.dygraph as dg
|
||||
import numpy as np
|
||||
|
||||
import weight_norm
|
||||
|
||||
|
||||
def Embedding(name_scope,
|
||||
num_embeddings,
|
||||
embed_dim,
|
||||
padding_idx=None,
|
||||
std=0.1,
|
||||
dtype="float32"):
|
||||
# param attrs
|
||||
weight_attr = fluid.ParamAttr(initializer=fluid.initializer.Normal(
|
||||
scale=std))
|
||||
layer = dg.Embedding(
|
||||
name_scope, (num_embeddings, embed_dim),
|
||||
padding_idx=padding_idx,
|
||||
param_attr=weight_attr,
|
||||
dtype=dtype)
|
||||
return layer
|
||||
|
||||
|
||||
def FC(name_scope,
|
||||
in_features,
|
||||
size,
|
||||
num_flatten_dims=1,
|
||||
relu=False,
|
||||
dropout=0.0,
|
||||
act=None,
|
||||
dtype="float32"):
|
||||
"""
|
||||
A special Linear Layer, when it is used with dropout, the weight is
|
||||
initialized as normal(0, std=np.sqrt((1-dropout) / in_features))
|
||||
"""
|
||||
|
||||
# stds
|
||||
if isinstance(in_features, int):
|
||||
in_features = [in_features]
|
||||
|
||||
stds = [np.sqrt((1.0 - dropout) / in_feature) for in_feature in in_features]
|
||||
if relu:
|
||||
stds = [std * np.sqrt(2.0) for std in stds]
|
||||
|
||||
weight_inits = [
|
||||
fluid.initializer.NormalInitializer(scale=std) for std in stds
|
||||
]
|
||||
bias_init = fluid.initializer.ConstantInitializer(0.0)
|
||||
|
||||
# param attrs
|
||||
weight_attrs = [fluid.ParamAttr(initializer=init) for init in weight_inits]
|
||||
bias_attr = fluid.ParamAttr(initializer=bias_init)
|
||||
|
||||
layer = weight_norm.FC(name_scope,
|
||||
size,
|
||||
num_flatten_dims=num_flatten_dims,
|
||||
param_attr=weight_attrs,
|
||||
bias_attr=bias_attr,
|
||||
act=act,
|
||||
dtype=dtype)
|
||||
return layer
|
||||
|
||||
|
||||
def Conv1D(name_scope,
|
||||
in_channels,
|
||||
num_filters,
|
||||
filter_size=2,
|
||||
dilation=1,
|
||||
groups=None,
|
||||
causal=False,
|
||||
std_mul=1.0,
|
||||
dropout=0.0,
|
||||
use_cudnn=True,
|
||||
act=None,
|
||||
dtype="float32"):
|
||||
"""
|
||||
A special Conv1D Layer, when it is used with dropout, the weight is
|
||||
initialized as
|
||||
normal(0, std=np.sqrt(std_mul * (1-dropout) / (filter_size * in_channels)))
|
||||
"""
|
||||
# std
|
||||
std = np.sqrt((std_mul * (1.0 - dropout)) / (filter_size * in_channels))
|
||||
weight_init = fluid.initializer.NormalInitializer(loc=0.0, scale=std)
|
||||
bias_init = fluid.initializer.ConstantInitializer(0.0)
|
||||
|
||||
# param attrs
|
||||
weight_attr = fluid.ParamAttr(initializer=weight_init)
|
||||
bias_attr = fluid.ParamAttr(initializer=bias_init)
|
||||
|
||||
layer = weight_norm.Conv1D(
|
||||
name_scope,
|
||||
num_filters,
|
||||
filter_size,
|
||||
dilation,
|
||||
groups=groups,
|
||||
causal=causal,
|
||||
param_attr=weight_attr,
|
||||
bias_attr=bias_attr,
|
||||
use_cudnn=use_cudnn,
|
||||
act=act,
|
||||
dtype=dtype)
|
||||
return layer
|
||||
|
||||
|
||||
class Conv1D_GU(dg.Layer):
|
||||
def __init__(self,
|
||||
name_scope,
|
||||
conditioner_dim,
|
||||
in_channels,
|
||||
num_filters,
|
||||
filter_size,
|
||||
dilation,
|
||||
causal=False,
|
||||
residual=True,
|
||||
dtype="float32"):
|
||||
super(Conv1D_GU, self).__init__(name_scope, dtype=dtype)
|
||||
|
||||
self.conditioner_dim = conditioner_dim
|
||||
self.in_channels = in_channels
|
||||
self.num_filters = num_filters
|
||||
self.filter_size = filter_size
|
||||
self.dilation = dilation
|
||||
self.causal = causal
|
||||
self.residual = residual
|
||||
|
||||
if residual:
|
||||
assert (
|
||||
in_channels == num_filters
|
||||
), "this block uses residual connection"\
|
||||
"the input_channels should equals num_filters"
|
||||
|
||||
self.conv = Conv1D(
|
||||
self.full_name(),
|
||||
in_channels,
|
||||
2 * num_filters,
|
||||
filter_size,
|
||||
dilation,
|
||||
causal=causal,
|
||||
dtype=dtype)
|
||||
|
||||
self.fc = Conv1D(
|
||||
self.full_name(),
|
||||
conditioner_dim,
|
||||
2 * num_filters,
|
||||
filter_size=1,
|
||||
dilation=1,
|
||||
causal=False,
|
||||
dtype=dtype)
|
||||
|
||||
def forward(self, x, skip=None, conditioner=None):
|
||||
"""
|
||||
Args:
|
||||
x (Variable): Shape(B, C_in, 1, T), the input of Conv1DGLU
|
||||
layer, where B means batch_size, C_in means the input channels
|
||||
T means input time steps.
|
||||
conditioner (Variable): Shape(B, C_con, 1, T), expanded mel
|
||||
conditioner, where C_con is conditioner hidden dim which
|
||||
equals the num of mel bands. Note that when using residual
|
||||
connection, the Conv1DGLU does not change the number of
|
||||
channels, so out channels equals input channels.
|
||||
Returns:
|
||||
x (Variable): Shape(B, C_out, 1, T), the output of Conv1DGLU, where
|
||||
C_out means the output channels of Conv1DGLU.
|
||||
"""
|
||||
residual = x
|
||||
x = self.conv(x)
|
||||
|
||||
if conditioner is not None:
|
||||
cond_bias = self.fc(conditioner)
|
||||
x += cond_bias
|
||||
|
||||
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
|
||||
|
||||
# Gated Unit.
|
||||
x = fluid.layers.elementwise_mul(fluid.layers.sigmoid(gate),
|
||||
fluid.layers.tanh(content))
|
||||
|
||||
if skip is None:
|
||||
skip = x
|
||||
else:
|
||||
skip = fluid.layers.scale(skip + x, np.sqrt(0.5))
|
||||
|
||||
if self.residual:
|
||||
x = fluid.layers.scale(residual + x, np.sqrt(0.5))
|
||||
|
||||
return x, skip
|
||||
|
||||
def add_input(self, x, skip=None, conditioner=None):
|
||||
"""
|
||||
Inputs:
|
||||
x: shape(B, num_filters, 1, time_steps)
|
||||
conditioner: shape(B, conditioner_dim, 1, time_steps)
|
||||
Outputs:
|
||||
out: shape(B, num_filters, 1, time_steps), where time_steps = 1
|
||||
"""
|
||||
residual = x
|
||||
|
||||
# add step input and produce step output
|
||||
x = self.conv.add_input(x)
|
||||
|
||||
if conditioner is not None:
|
||||
cond_bias = self.fc(conditioner)
|
||||
x += cond_bias
|
||||
|
||||
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
|
||||
|
||||
# Gated Unit.
|
||||
x = fluid.layers.elementwise_mul(fluid.layers.sigmoid(gate),
|
||||
fluid.layers.tanh(content))
|
||||
|
||||
if skip is None:
|
||||
skip = x
|
||||
else:
|
||||
skip = fluid.layers.scale(skip + x, np.sqrt(0.5))
|
||||
|
||||
if self.residual:
|
||||
x = fluid.layers.scale(residual + x, np.sqrt(0.5))
|
||||
|
||||
return x, skip
|
||||
|
||||
|
||||
def Conv2DTranspose(name_scope,
|
||||
num_filters,
|
||||
filter_size,
|
||||
padding=0,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
use_cudnn=True,
|
||||
act=None,
|
||||
dtype="float32"):
|
||||
val = 1.0 / (filter_size[0] * filter_size[1])
|
||||
weight_init = fluid.initializer.ConstantInitializer(val)
|
||||
weight_attr = fluid.ParamAttr(initializer=weight_init)
|
||||
|
||||
layer = weight_norm.Conv2DTranspose(
|
||||
name_scope,
|
||||
num_filters,
|
||||
filter_size=filter_size,
|
||||
padding=padding,
|
||||
stride=stride,
|
||||
dilation=dilation,
|
||||
param_attr=weight_attr,
|
||||
use_cudnn=use_cudnn,
|
||||
act=act,
|
||||
dtype=dtype)
|
||||
|
||||
return layer
|
|
@ -0,0 +1,112 @@
|
|||
"""
|
||||
Utility module for restarting training when using SLURM.
|
||||
"""
|
||||
import subprocess
|
||||
import os
|
||||
import sys
|
||||
import shlex
|
||||
import re
|
||||
import time
|
||||
|
||||
|
||||
def job_info():
|
||||
"""Get information about the current job using `scontrol show job`.
|
||||
Returns a dict mapping parameter names (e.g. "UserId", "RunTime", etc) to
|
||||
their values, both as strings.
|
||||
"""
|
||||
job_id = int(os.environ["SLURM_JOB_ID"])
|
||||
|
||||
command = ["scontrol", "show", "job", str(job_id)]
|
||||
output = subprocess.check_output(command).decode("utf-8")
|
||||
|
||||
# Use a regex to extract the parameter names and values
|
||||
pattern = "([A-Za-z/]*)=([^ \t\n]*)"
|
||||
return dict(re.findall(pattern, output))
|
||||
|
||||
|
||||
def parse_hours(text):
|
||||
"""Parse a time format HH or DD-HH into a number of hours."""
|
||||
hour_chunks = text.split("-")
|
||||
if len(hour_chunks) == 1:
|
||||
return int(hour_chunks[0])
|
||||
elif len(hour_chunks) == 2:
|
||||
return 24 * int(hour_chunks[0]) + int(hour_chunks[1])
|
||||
else:
|
||||
raise ValueError("Unexpected hour format (expected HH or "
|
||||
"DD-HH, but got {}).".format(text))
|
||||
|
||||
|
||||
def parse_time(text):
|
||||
"""Convert slurm time to an integer.
|
||||
Expects time to be of the form:
|
||||
"hours:minutes:seconds" or "day-hours:minutes:seconds".
|
||||
"""
|
||||
hours, minutes, seconds = text.split(":")
|
||||
try:
|
||||
return parse_hours(hours) * 3600 + int(minutes) * 60 + int(seconds)
|
||||
except ValueError as e:
|
||||
raise ValueError("Error parsing time {}. Got error {}.".format(
|
||||
text, str(e)))
|
||||
|
||||
|
||||
def restart_command():
|
||||
"""Using the environment and SLURM command, create a command that, when,
|
||||
run, will enqueue a repeat of the current job using `sbatch`.
|
||||
Return the command as a list of strings, suitable for passing to
|
||||
`subprocess.check_call` or similar functions.
|
||||
Returns:
|
||||
resume_command: list<str>, command to run to restart job.
|
||||
end_time: int or None; the time the job will end or None
|
||||
if the job has unlimited runtime.
|
||||
"""
|
||||
# Make sure `RunTime` could be parsed correctly.
|
||||
while job_info()["RunTime"] == "INVALID":
|
||||
time.sleep(1)
|
||||
|
||||
# Get all the necessary information by querying SLURM with this job id
|
||||
info = job_info()
|
||||
|
||||
try:
|
||||
num_cpus = int(info["CPUs/Task"])
|
||||
except KeyError:
|
||||
num_cpus = int(os.environ["SLURM_CPUS_PER_TASK"])
|
||||
|
||||
num_tasks = int(os.environ["SLURM_NTASKS"])
|
||||
nodes = info["NumNodes"]
|
||||
gres, partition = info.get("Gres"), info.get("Partition")
|
||||
stderr, stdout = info.get("StdErr"), info.get("StdOut")
|
||||
job_name = info.get("JobName")
|
||||
command = ["sbatch", "--job-name={}".format(job_name),
|
||||
"--ntasks={}".format(num_tasks)]
|
||||
|
||||
if partition:
|
||||
command.extend(["--partition", partition])
|
||||
|
||||
if gres and gres != "(null)":
|
||||
command.extend(["--gres", gres])
|
||||
num_gpu = int(gres.split(':')[-1])
|
||||
print("number of gpu assigned by slurm is {}".format(num_gpu))
|
||||
|
||||
if stderr:
|
||||
command.extend(["--error", stderr])
|
||||
|
||||
if stdout:
|
||||
command.extend(["--output", stdout])
|
||||
|
||||
python = subprocess.check_output(
|
||||
["/usr/bin/which", "python3"]).decode("utf-8").strip()
|
||||
dist_setting = ['-m', 'paddle.distributed.launch']
|
||||
wrap_cmd = ["srun", python, '-u'] + dist_setting + sys.argv
|
||||
|
||||
command.append(
|
||||
"--wrap={}".format(" ".join(shlex.quote(arg) for arg in wrap_cmd)))
|
||||
time_limit_string = info["TimeLimit"]
|
||||
if time_limit_string.lower() == "unlimited":
|
||||
print("UNLIMITED detected: restart OFF, infinite learning ON.",
|
||||
flush=True)
|
||||
return command, None
|
||||
time_limit = parse_time(time_limit_string)
|
||||
runtime = parse_time(info["RunTime"])
|
||||
end_time = time.time() + time_limit - runtime
|
||||
|
||||
return command, end_time
|
|
@ -0,0 +1,85 @@
|
|||
import os
|
||||
import random
|
||||
from pprint import pprint
|
||||
|
||||
import jsonargparse
|
||||
import numpy as np
|
||||
import paddle.fluid.dygraph as dg
|
||||
from paddle import fluid
|
||||
|
||||
import utils
|
||||
from wavenet import WaveNet
|
||||
|
||||
|
||||
def add_options_to_parser(parser):
|
||||
parser.add_argument('--model', type=str, default='wavenet',
|
||||
help="general name of the model")
|
||||
parser.add_argument('--name', type=str,
|
||||
help="specific name of the training model")
|
||||
parser.add_argument('--root', type=str,
|
||||
help="root path of the LJSpeech dataset")
|
||||
|
||||
parser.add_argument('--use_gpu', type=bool, default=True,
|
||||
help="option to use gpu training")
|
||||
|
||||
parser.add_argument('--iteration', type=int, default=None,
|
||||
help=("which iteration of checkpoint to load, "
|
||||
"default to load the latest checkpoint"))
|
||||
parser.add_argument('--checkpoint', type=str, default=None,
|
||||
help="path of the checkpoint to load")
|
||||
|
||||
parser.add_argument('--output', type=str, default="./syn_audios",
|
||||
help="path to write synthesized audio files")
|
||||
parser.add_argument('--sample', type=int,
|
||||
help="which of the valid samples to synthesize audio")
|
||||
|
||||
|
||||
def synthesize(config):
|
||||
pprint(jsonargparse.namespace_to_dict(config))
|
||||
|
||||
# Get checkpoint directory path.
|
||||
run_dir = os.path.join("runs", config.model, config.name)
|
||||
checkpoint_dir = os.path.join(run_dir, "checkpoint")
|
||||
|
||||
# Configurate device.
|
||||
place = fluid.CUDAPlace(0) if config.use_gpu else fluid.CPUPlace()
|
||||
|
||||
with dg.guard(place):
|
||||
# Fix random seed.
|
||||
seed = config.seed
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
fluid.default_startup_program().random_seed = seed
|
||||
fluid.default_main_program().random_seed = seed
|
||||
print("Random Seed: ", seed)
|
||||
|
||||
# Build model.
|
||||
model = WaveNet(config, checkpoint_dir)
|
||||
model.build(training=False)
|
||||
|
||||
# Obtain the current iteration.
|
||||
if config.checkpoint is None:
|
||||
if config.iteration is None:
|
||||
iteration = utils.load_latest_checkpoint(checkpoint_dir)
|
||||
else:
|
||||
iteration = config.iteration
|
||||
else:
|
||||
iteration = int(config.checkpoint.split('/')[-1].split('-')[-1])
|
||||
|
||||
# Run model inference.
|
||||
model.infer(iteration)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Create parser.
|
||||
parser = jsonargparse.ArgumentParser(
|
||||
description="Synthesize audio using WaveNet model",
|
||||
formatter_class='default_argparse')
|
||||
add_options_to_parser(parser)
|
||||
utils.add_config_options_to_parser(parser)
|
||||
|
||||
# Parse argument from both command line and yaml config file.
|
||||
# For conflicting updates to the same field,
|
||||
# the preceding update will be overwritten by the following one.
|
||||
config = parser.parse_args()
|
||||
synthesize(config)
|
|
@ -0,0 +1,139 @@
|
|||
import os
|
||||
import random
|
||||
import subprocess
|
||||
import time
|
||||
from pprint import pprint
|
||||
|
||||
import jsonargparse
|
||||
import numpy as np
|
||||
import paddle.fluid.dygraph as dg
|
||||
from paddle import fluid
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
import slurm
|
||||
import utils
|
||||
from wavenet import WaveNet
|
||||
|
||||
MAXIMUM_SAVE_TIME = 10 * 60
|
||||
|
||||
|
||||
def add_options_to_parser(parser):
|
||||
parser.add_argument('--model', type=str, default='wavenet',
|
||||
help="general name of the model")
|
||||
parser.add_argument('--name', type=str,
|
||||
help="specific name of the training model")
|
||||
parser.add_argument('--root', type=str,
|
||||
help="root path of the LJSpeech dataset")
|
||||
|
||||
parser.add_argument('--parallel', type=bool, default=True,
|
||||
help="option to use data parallel training")
|
||||
parser.add_argument('--use_gpu', type=bool, default=True,
|
||||
help="option to use gpu training")
|
||||
|
||||
parser.add_argument('--iteration', type=int, default=None,
|
||||
help=("which iteration of checkpoint to load, "
|
||||
"default to load the latest checkpoint"))
|
||||
parser.add_argument('--checkpoint', type=str, default=None,
|
||||
help="path of the checkpoint to load")
|
||||
parser.add_argument('--slurm', type=bool, default=False,
|
||||
help="whether you are using slurm to submit training jobs")
|
||||
|
||||
|
||||
def train(config):
|
||||
use_gpu = config.use_gpu
|
||||
parallel = config.parallel if use_gpu else False
|
||||
|
||||
# Get the rank of the current training process.
|
||||
rank = dg.parallel.Env().local_rank if parallel else 0
|
||||
nranks = dg.parallel.Env().nranks if parallel else 1
|
||||
|
||||
if rank == 0:
|
||||
# Print the whole config setting.
|
||||
pprint(jsonargparse.namespace_to_dict(config))
|
||||
|
||||
# Make checkpoint directory.
|
||||
run_dir = os.path.join("runs", config.model, config.name)
|
||||
checkpoint_dir = os.path.join(run_dir, "checkpoint")
|
||||
os.makedirs(checkpoint_dir, exist_ok=True)
|
||||
|
||||
# Create tensorboard logger.
|
||||
tb = SummaryWriter(os.path.join(run_dir, "logs")) \
|
||||
if rank == 0 else None
|
||||
|
||||
# Configurate device
|
||||
place = fluid.CUDAPlace(rank) if use_gpu else fluid.CPUPlace()
|
||||
|
||||
with dg.guard(place):
|
||||
# Fix random seed.
|
||||
seed = config.seed
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
fluid.default_startup_program().random_seed = seed
|
||||
fluid.default_main_program().random_seed = seed
|
||||
print("Random Seed: ", seed)
|
||||
|
||||
# Build model.
|
||||
model = WaveNet(config, checkpoint_dir, parallel, rank, nranks, tb)
|
||||
model.build()
|
||||
|
||||
# Obtain the current iteration.
|
||||
if config.checkpoint is None:
|
||||
if config.iteration is None:
|
||||
iteration = utils.load_latest_checkpoint(checkpoint_dir, rank)
|
||||
else:
|
||||
iteration = config.iteration
|
||||
else:
|
||||
iteration = int(config.checkpoint.split('/')[-1].split('-')[-1])
|
||||
|
||||
# Get restart command if using slurm.
|
||||
if config.slurm:
|
||||
resume_command, death_time = slurm.restart_command()
|
||||
if rank == 0:
|
||||
print("Restart command:", " ".join(resume_command))
|
||||
done = False
|
||||
|
||||
while iteration < config.max_iterations:
|
||||
# Run one single training step.
|
||||
model.train_step(iteration)
|
||||
|
||||
iteration += 1
|
||||
|
||||
if iteration % config.test_every == 0:
|
||||
# Run validation step.
|
||||
model.valid_step(iteration)
|
||||
|
||||
# Check whether reaching the time limit.
|
||||
if config.slurm:
|
||||
done = (death_time is not None and death_time - time.time() <
|
||||
MAXIMUM_SAVE_TIME)
|
||||
|
||||
if rank == 0 and done:
|
||||
print("Saving progress before exiting.")
|
||||
model.save(iteration)
|
||||
|
||||
print("Running restart command:", " ".join(resume_command))
|
||||
# Submit restart command.
|
||||
subprocess.check_call(resume_command)
|
||||
break
|
||||
|
||||
if rank == 0 and iteration % config.save_every == 0:
|
||||
# Save parameters.
|
||||
model.save(iteration)
|
||||
|
||||
# Close TensorBoard.
|
||||
if rank == 0:
|
||||
tb.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Create parser.
|
||||
parser = jsonargparse.ArgumentParser(description="Train WaveNet model",
|
||||
formatter_class='default_argparse')
|
||||
add_options_to_parser(parser)
|
||||
utils.add_config_options_to_parser(parser)
|
||||
|
||||
# Parse argument from both command line and yaml config file.
|
||||
# For conflicting updates to the same field,
|
||||
# the preceding update will be overwritten by the following one.
|
||||
config = parser.parse_args()
|
||||
train(config)
|
|
@ -0,0 +1,143 @@
|
|||
import itertools
|
||||
import os
|
||||
import time
|
||||
|
||||
import jsonargparse
|
||||
import numpy as np
|
||||
import paddle.fluid.dygraph as dg
|
||||
|
||||
|
||||
def add_config_options_to_parser(parser):
|
||||
parser.add_argument('--valid_size', type=int,
|
||||
help="size of the valid dataset")
|
||||
parser.add_argument('--train_clip_second', type=float,
|
||||
help="the length of audio clip for training")
|
||||
parser.add_argument('--sample_rate', type=int,
|
||||
help="sampling rate of audio data file")
|
||||
parser.add_argument('--fft_window_shift', type=int,
|
||||
help="the shift of fft window for each frame")
|
||||
parser.add_argument('--fft_window_size', type=int,
|
||||
help="the size of fft window for each frame")
|
||||
parser.add_argument('--fft_size', type=int,
|
||||
help="the size of fft filter on each frame")
|
||||
parser.add_argument('--mel_bands', type=int,
|
||||
help="the number of mel bands when calculating mel spectrograms")
|
||||
|
||||
parser.add_argument('--seed', type=int,
|
||||
help="seed of random initialization for the model")
|
||||
parser.add_argument('--batch_size', type=int,
|
||||
help="batch size for training")
|
||||
parser.add_argument('--test_every', type=int,
|
||||
help="test interval during training")
|
||||
parser.add_argument('--save_every', type=int,
|
||||
help="checkpointing interval during training")
|
||||
parser.add_argument('--max_iterations', type=int,
|
||||
help="maximum training iterations")
|
||||
|
||||
parser.add_argument('--layers', type=int,
|
||||
help="number of dilated convolution layers")
|
||||
parser.add_argument('--kernel_width', type=int,
|
||||
help="dilated convolution kernel width")
|
||||
parser.add_argument('--dilation_block', type=list,
|
||||
help="dilated convolution kernel width")
|
||||
parser.add_argument('--residual_channels', type=int)
|
||||
parser.add_argument('--skip_channels', type=int)
|
||||
parser.add_argument('--loss_type', type=str,
|
||||
help="mix-gaussian-pdf or softmax")
|
||||
parser.add_argument('--num_channels', type=int, default=None,
|
||||
help="number of channels for softmax output")
|
||||
parser.add_argument('--num_mixtures', type=int, default=None,
|
||||
help="number of gaussian mixtures for gaussian output")
|
||||
parser.add_argument('--log_scale_min', type=float, default=None,
|
||||
help="minimum clip value of log variance of gaussian output")
|
||||
|
||||
parser.add_argument('--conditioner.filter_sizes', type=list,
|
||||
help="conv2d tranpose op filter sizes for building conditioner")
|
||||
parser.add_argument('--conditioner.upsample_factors', type=list,
|
||||
help="list of upsample factors for building conditioner")
|
||||
|
||||
parser.add_argument('--learning_rate', type=float)
|
||||
parser.add_argument('--gradient_max_norm', type=float)
|
||||
parser.add_argument('--anneal.every', type=int,
|
||||
help="step interval for annealing learning rate")
|
||||
parser.add_argument('--anneal.rate', type=float)
|
||||
|
||||
parser.add_argument('--config', action=jsonargparse.ActionConfigFile)
|
||||
|
||||
|
||||
def pad_to_size(array, length, pad_with=0.0):
|
||||
"""
|
||||
Pad an array on the first (length) axis to a given length.
|
||||
"""
|
||||
padding = length - array.shape[0]
|
||||
assert padding >= 0, "Padding required was less than zero"
|
||||
|
||||
paddings = [(0, 0)] * len(array.shape)
|
||||
paddings[0] = (0, padding)
|
||||
|
||||
return np.pad(array, paddings, mode='constant', constant_values=pad_with)
|
||||
|
||||
|
||||
def calculate_context_size(config):
|
||||
dilations = list(
|
||||
itertools.islice(
|
||||
itertools.cycle(config.dilation_block), config.layers))
|
||||
config.context_size = sum(dilations) + 1
|
||||
print("Context size is", config.context_size)
|
||||
|
||||
|
||||
def load_latest_checkpoint(checkpoint_dir, rank=0):
|
||||
checkpoint_path = os.path.join(checkpoint_dir, "checkpoint")
|
||||
# Create checkpoint index file if not exist.
|
||||
if (not os.path.isfile(checkpoint_path)) and rank == 0:
|
||||
with open(checkpoint_path, "w") as handle:
|
||||
handle.write("model_checkpoint_path: step-0")
|
||||
|
||||
# Make sure that other process waits until checkpoint file is created
|
||||
# by process 0.
|
||||
while not os.path.isfile(checkpoint_path):
|
||||
time.sleep(1)
|
||||
|
||||
# Fetch the latest checkpoint index.
|
||||
with open(checkpoint_path, "r") as handle:
|
||||
latest_checkpoint = handle.readline().split()[-1]
|
||||
iteration = int(latest_checkpoint.split("-")[-1])
|
||||
|
||||
return iteration
|
||||
|
||||
|
||||
def save_latest_checkpoint(checkpoint_dir, iteration):
|
||||
checkpoint_path = os.path.join(checkpoint_dir, "checkpoint")
|
||||
# Update the latest checkpoint index.
|
||||
with open(checkpoint_path, "w") as handle:
|
||||
handle.write("model_checkpoint_path: step-{}".format(iteration))
|
||||
|
||||
|
||||
def load_parameters(checkpoint_dir, rank, model, optimizer=None,
|
||||
iteration=None, file_path=None):
|
||||
if file_path is None:
|
||||
if iteration is None:
|
||||
iteration = load_latest_checkpoint(checkpoint_dir, rank)
|
||||
if iteration == 0:
|
||||
return
|
||||
file_path = "{}/step-{}".format(checkpoint_dir, iteration)
|
||||
|
||||
model_dict, optimizer_dict = dg.load_dygraph(file_path)
|
||||
model.set_dict(model_dict)
|
||||
print("[checkpoint] Rank {}: loaded model from {}".format(rank, file_path))
|
||||
if optimizer and optimizer_dict:
|
||||
optimizer.set_dict(optimizer_dict)
|
||||
print("[checkpoint] Rank {}: loaded optimizer state from {}".format(
|
||||
rank, file_path))
|
||||
|
||||
|
||||
def save_latest_parameters(checkpoint_dir, iteration, model, optimizer=None):
|
||||
file_path = "{}/step-{}".format(checkpoint_dir, iteration)
|
||||
model_dict = model.state_dict()
|
||||
dg.save_dygraph(model_dict, file_path)
|
||||
print("[checkpoint] Saved model to {}".format(file_path))
|
||||
|
||||
if optimizer:
|
||||
opt_dict = optimizer.state_dict()
|
||||
dg.save_dygraph(opt_dict, file_path)
|
||||
print("[checkpoint] Saved optimzier state to {}".format(file_path))
|
|
@ -0,0 +1,188 @@
|
|||
import itertools
|
||||
import os
|
||||
import time
|
||||
|
||||
import librosa
|
||||
import numpy as np
|
||||
from paddle import fluid
|
||||
import paddle.fluid.dygraph as dg
|
||||
|
||||
import utils
|
||||
from data import LJSpeech
|
||||
from wavenet_modules import WaveNetModule, debug
|
||||
|
||||
|
||||
class WaveNet():
|
||||
def __init__(self, config, checkpoint_dir, parallel=False, rank=0,
|
||||
nranks=1, tb_logger=None):
|
||||
# Process config to calculate the context size
|
||||
dilations = list(
|
||||
itertools.islice(
|
||||
itertools.cycle(config.dilation_block), config.layers))
|
||||
config.context_size = sum(dilations) + 1
|
||||
self.config = config
|
||||
self.checkpoint_dir = checkpoint_dir
|
||||
self.parallel = parallel
|
||||
self.rank = rank
|
||||
self.nranks = nranks
|
||||
self.tb_logger = tb_logger
|
||||
|
||||
def build(self, training=True):
|
||||
config = self.config
|
||||
dataset = LJSpeech(config, self.nranks, self.rank)
|
||||
self.trainloader = dataset.trainloader
|
||||
self.validloader = dataset.validloader
|
||||
|
||||
# if self.rank == 0:
|
||||
# for i, (audios, mels, ids) in enumerate(self.validloader()):
|
||||
# print("audios {}, mels {}, ids {}".format(audios.dtype, mels.dtype, ids.dtype))
|
||||
# print("{}: rank {}, audios {}, mels {}, indices {} / {}".format(
|
||||
# i, self.rank, audios.shape, mels.shape, ids.shape,
|
||||
# ids.numpy()))
|
||||
#
|
||||
# for i, (audios, mels, ids) in enumerate(self.trainloader):
|
||||
# print("{}: rank {}, audios {}, mels {}, indices {} / {}".format(
|
||||
# i, self.rank, audios.shape, mels.shape, ids.shape,
|
||||
# ids.numpy()))
|
||||
|
||||
wavenet = WaveNetModule("wavenet", config, self.rank)
|
||||
|
||||
# Dry run once to create and initalize all necessary parameters.
|
||||
audio = dg.to_variable(np.random.randn(1, 20000).astype(np.float32))
|
||||
mel = dg.to_variable(
|
||||
np.random.randn(1, 100, self.config.mel_bands).astype(np.float32))
|
||||
audio_start = dg.to_variable(np.array([0], dtype=np.int32))
|
||||
wavenet(audio, mel, audio_start)
|
||||
|
||||
if training:
|
||||
# Create Learning rate scheduler.
|
||||
lr_scheduler = dg.ExponentialDecay(
|
||||
learning_rate = config.learning_rate,
|
||||
decay_steps = config.anneal.every,
|
||||
decay_rate = config.anneal.rate,
|
||||
staircase=True)
|
||||
|
||||
optimizer = fluid.optimizer.AdamOptimizer(
|
||||
learning_rate=lr_scheduler)
|
||||
|
||||
clipper = fluid.dygraph_grad_clip.GradClipByGlobalNorm(
|
||||
config.gradient_max_norm)
|
||||
|
||||
# Load parameters.
|
||||
utils.load_parameters(self.checkpoint_dir, self.rank,
|
||||
wavenet, optimizer,
|
||||
iteration=config.iteration,
|
||||
file_path=config.checkpoint)
|
||||
print("Rank {}: checkpoint loaded.".format(self.rank))
|
||||
|
||||
# Data parallelism.
|
||||
if self.parallel:
|
||||
strategy = dg.parallel.prepare_context()
|
||||
wavenet = dg.parallel.DataParallel(wavenet, strategy)
|
||||
|
||||
self.wavenet = wavenet
|
||||
self.optimizer = optimizer
|
||||
self.clipper = clipper
|
||||
|
||||
else:
|
||||
# Load parameters.
|
||||
utils.load_parameters(self.checkpoint_dir, self.rank, wavenet,
|
||||
iteration=config.iteration,
|
||||
file_path=config.checkpoint)
|
||||
print("Rank {}: checkpoint loaded.".format(self.rank))
|
||||
|
||||
self.wavenet = wavenet
|
||||
|
||||
def train_step(self, iteration):
|
||||
self.wavenet.train()
|
||||
|
||||
start_time = time.time()
|
||||
audios, mels, audio_starts = next(self.trainloader)
|
||||
load_time = time.time()
|
||||
|
||||
loss, _ = self.wavenet(audios, mels, audio_starts)
|
||||
|
||||
if self.parallel:
|
||||
# loss = loss / num_trainers
|
||||
loss = self.wavenet.scale_loss(loss)
|
||||
loss.backward()
|
||||
self.wavenet.apply_collective_grads()
|
||||
else:
|
||||
loss.backward()
|
||||
|
||||
if isinstance(self.optimizer._learning_rate,
|
||||
fluid.optimizer.LearningRateDecay):
|
||||
current_lr = self.optimizer._learning_rate.step().numpy()
|
||||
else:
|
||||
current_lr = self.optimizer._learning_rate
|
||||
|
||||
self.optimizer.minimize(loss, grad_clip=self.clipper,
|
||||
parameter_list=self.wavenet.parameters())
|
||||
self.wavenet.clear_gradients()
|
||||
|
||||
graph_time = time.time()
|
||||
|
||||
if self.rank == 0:
|
||||
loss_val = float(loss.numpy()) * self.nranks
|
||||
log = "Rank: {} Step: {:^8d} Loss: {:<8.3f} " \
|
||||
"Time: {:.3f}/{:.3f}".format(
|
||||
self.rank, iteration, loss_val,
|
||||
load_time - start_time, graph_time - load_time)
|
||||
print(log)
|
||||
|
||||
tb = self.tb_logger
|
||||
tb.add_scalar("Train-Loss-Rank-0", loss_val, iteration)
|
||||
tb.add_scalar("Learning-Rate", current_lr, iteration)
|
||||
|
||||
@dg.no_grad
|
||||
def valid_step(self, iteration):
|
||||
self.wavenet.eval()
|
||||
|
||||
total_loss = []
|
||||
start_time = time.time()
|
||||
sample_audios = []
|
||||
for audios, mels, audio_starts in self.validloader():
|
||||
loss, sample_audio = self.wavenet(audios, mels, audio_starts, True)
|
||||
total_loss.append(float(loss.numpy()))
|
||||
sample_audios.append(sample_audio)
|
||||
total_time = time.time() - start_time
|
||||
|
||||
if self.rank == 0:
|
||||
loss_val = np.mean(total_loss)
|
||||
log = "Test | Rank: {} AvgLoss: {:<8.3f} Time {:<8.3f}".format(
|
||||
self.rank, loss_val, total_time)
|
||||
print(log)
|
||||
|
||||
tb = self.tb_logger
|
||||
tb.add_scalar("Valid-Avg-Loss", loss_val, iteration)
|
||||
tb.add_audio("Teacher-Forced-Audio-0", sample_audios[0].numpy(),
|
||||
iteration, sample_rate=self.config.sample_rate)
|
||||
tb.add_audio("Teacher-Forced-Audio-1", sample_audios[1].numpy(),
|
||||
iteration, sample_rate=self.config.sample_rate)
|
||||
|
||||
def save(self, iteration):
|
||||
utils.save_latest_parameters(self.checkpoint_dir, iteration,
|
||||
self.wavenet, self.optimizer)
|
||||
utils.save_latest_checkpoint(self.checkpoint_dir, iteration)
|
||||
|
||||
@dg.no_grad
|
||||
def infer(self, iteration):
|
||||
self.wavenet.eval()
|
||||
|
||||
config = self.config
|
||||
sample = config.sample
|
||||
|
||||
output = "{}/{}/iter-{}".format(config.output, config.name, iteration)
|
||||
os.makedirs(output, exist_ok=True)
|
||||
|
||||
filename = "{}/valid_{}.wav".format(output, sample)
|
||||
print("Synthesize sample {}, save as {}".format(sample, filename))
|
||||
|
||||
mels_list = [mels for _, mels, _ in self.validloader()]
|
||||
start_time = time.time()
|
||||
syn_audio = self.wavenet.synthesize(mels_list[sample])
|
||||
syn_time = time.time() - start_time
|
||||
print("audio shape {}, synthesis time {}".format(
|
||||
syn_audio.shape, syn_time))
|
||||
librosa.output.write_wav(filename, syn_audio,
|
||||
sr=config.sample_rate)
|
|
@ -0,0 +1,423 @@
|
|||
import itertools
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
from paddle import fluid
|
||||
import paddle.fluid.dygraph as dg
|
||||
import ops
|
||||
import weight_norm
|
||||
|
||||
|
||||
def get_padding(filter_size, stride, padding_type='same'):
|
||||
if padding_type == 'same':
|
||||
padding = [(x - y) // 2 for x, y in zip(filter_size, stride)]
|
||||
else:
|
||||
raise ValueError("Only support same padding")
|
||||
return padding
|
||||
|
||||
|
||||
def debug(x, var_name, rank, verbose=False):
|
||||
if not verbose and rank != 0:
|
||||
return
|
||||
dim = len(x.shape)
|
||||
if not isinstance(x, np.ndarray):
|
||||
x = x.numpy()
|
||||
if dim == 1:
|
||||
print("Rank {}".format(rank), var_name, "shape {}, value {}".format(x.shape, x))
|
||||
elif dim == 2:
|
||||
print("Rank {}".format(rank), var_name, "shape {}, value {}".format(x.shape, x[:, :5]))
|
||||
elif dim == 3:
|
||||
print("Rank {}".format(rank), var_name, "shape {}, value {}".format(x.shape, x[:, :5, 0]))
|
||||
else:
|
||||
print("Rank", rank, var_name, "shape", x.shape)
|
||||
|
||||
|
||||
def extract_slices(x, audio_starts, audio_length, rank):
|
||||
slices = []
|
||||
for i in range(x.shape[0]):
|
||||
start = audio_starts.numpy()[i]
|
||||
end = start + audio_length
|
||||
slice = fluid.layers.slice(
|
||||
x, axes=[0, 1], starts=[i, start], ends=[i+1, end])
|
||||
slices.append(fluid.layers.squeeze(slice, [0]))
|
||||
|
||||
x = fluid.layers.stack(slices, axis=0)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Conditioner(dg.Layer):
|
||||
def __init__(self, name_scope, config):
|
||||
super(Conditioner, self).__init__(name_scope)
|
||||
upsample_factors = config.conditioner.upsample_factors
|
||||
filter_sizes = config.conditioner.filter_sizes
|
||||
assert np.prod(upsample_factors) == config.fft_window_shift
|
||||
|
||||
self.deconvs = []
|
||||
for i, up_scale in enumerate(upsample_factors):
|
||||
stride = (up_scale, 1)
|
||||
padding = get_padding(filter_sizes[i], stride)
|
||||
self.deconvs.append(
|
||||
ops.Conv2DTranspose(
|
||||
self.full_name(),
|
||||
num_filters=1,
|
||||
filter_size=filter_sizes[i],
|
||||
padding=padding,
|
||||
stride=stride))
|
||||
|
||||
# Register python list as parameters.
|
||||
for i, layer in enumerate(self.deconvs):
|
||||
self.add_sublayer("conv_transpose_{}".format(i), layer)
|
||||
|
||||
def forward(self, x):
|
||||
x = fluid.layers.unsqueeze(x, 1)
|
||||
for layer in self.deconvs:
|
||||
x = fluid.layers.leaky_relu(layer(x), alpha=0.4)
|
||||
|
||||
return fluid.layers.squeeze(x, [1])
|
||||
|
||||
|
||||
class WaveNetModule(dg.Layer):
|
||||
def __init__(self, name_scope, config, rank):
|
||||
super(WaveNetModule, self).__init__(name_scope)
|
||||
|
||||
self.rank = rank
|
||||
self.conditioner = Conditioner(self.full_name(), config)
|
||||
self.dilations = list(
|
||||
itertools.islice(
|
||||
itertools.cycle(config.dilation_block), config.layers))
|
||||
self.context_size = sum(self.dilations) + 1
|
||||
self.log_scale_min = config.log_scale_min
|
||||
self.config = config
|
||||
|
||||
print("dilations", self.dilations)
|
||||
print("context_size", self.context_size)
|
||||
|
||||
if config.loss_type == "softmax":
|
||||
self.embedding_fc = ops.Embedding(
|
||||
self.full_name(),
|
||||
num_embeddings=config.num_channels,
|
||||
embed_dim=config.residual_channels)
|
||||
elif config.loss_type == "mix-gaussian-pdf":
|
||||
self.embedding_fc = ops.FC(
|
||||
self.full_name(),
|
||||
in_features=1,
|
||||
size=config.residual_channels,
|
||||
num_flatten_dims=2,
|
||||
relu=False)
|
||||
else:
|
||||
raise ValueError(
|
||||
"loss_type {} is unsupported!".format(loss_type))
|
||||
|
||||
self.dilated_causal_convs = []
|
||||
for dilation in self.dilations:
|
||||
self.dilated_causal_convs.append(
|
||||
ops.Conv1D_GU(
|
||||
self.full_name(),
|
||||
conditioner_dim=config.mel_bands,
|
||||
in_channels=config.residual_channels,
|
||||
num_filters=config.residual_channels,
|
||||
filter_size=config.kernel_width,
|
||||
dilation=dilation,
|
||||
causal=True
|
||||
)
|
||||
)
|
||||
|
||||
for i, layer in enumerate(self.dilated_causal_convs):
|
||||
self.add_sublayer("dilated_causal_conv_{}".format(i), layer)
|
||||
|
||||
self.fc1 = ops.FC(
|
||||
self.full_name(),
|
||||
in_features=config.residual_channels,
|
||||
size=config.skip_channels,
|
||||
num_flatten_dims=2,
|
||||
relu=True,
|
||||
act="relu")
|
||||
|
||||
self.fc2 = ops.FC(
|
||||
self.full_name(),
|
||||
in_features=config.skip_channels,
|
||||
size=config.skip_channels,
|
||||
num_flatten_dims=2,
|
||||
relu=True,
|
||||
act="relu")
|
||||
|
||||
if config.loss_type == "softmax":
|
||||
self.fc3 = ops.FC(
|
||||
self.full_name(),
|
||||
in_features=config.skip_channels,
|
||||
size=config.num_channels,
|
||||
num_flatten_dims=2,
|
||||
relu=False)
|
||||
elif config.loss_type == "mix-gaussian-pdf":
|
||||
self.fc3 = ops.FC(
|
||||
self.full_name(),
|
||||
in_features=config.skip_channels,
|
||||
size=3 * config.num_mixtures,
|
||||
num_flatten_dims=2,
|
||||
relu=False)
|
||||
else:
|
||||
raise ValueError(
|
||||
"loss_type {} is unsupported!".format(loss_type))
|
||||
|
||||
def sample_softmax(self, mix_parameters):
|
||||
batch, length, hidden = mix_parameters.shape
|
||||
mix_param_2d = fluid.layers.reshape(mix_parameters,
|
||||
[batch * length, hidden])
|
||||
mix_param_2d = fluid.layers.softmax(mix_param_2d, axis=-1)
|
||||
|
||||
# quantized: [batch * length]
|
||||
quantized = fluid.layers.cast(fluid.layers.sampling_id(mix_param_2d),
|
||||
dtype="float32")
|
||||
samples = (quantized + 0.5) * (2.0 / self.config.num_channels) - 1.0
|
||||
|
||||
# samples: [batch * length]
|
||||
return samples
|
||||
|
||||
def sample_mix_gaussian(self, mix_parameters):
|
||||
# mix_parameters reshape from [bs, 13799, 3 * num_mixtures]
|
||||
# to [bs * 13799, 3 * num_mixtures].
|
||||
batch, length, hidden = mix_parameters.shape
|
||||
mix_param_2d = fluid.layers.reshape(mix_parameters,
|
||||
[batch * length, hidden])
|
||||
K = hidden // 3
|
||||
|
||||
# Unpack the parameters of the mixture of gaussian.
|
||||
logits_pi = mix_param_2d[:, 0 : K]
|
||||
mu = mix_param_2d[:, K : 2*K]
|
||||
log_s = mix_param_2d[:, 2*K : 3*K]
|
||||
s = fluid.layers.exp(log_s)
|
||||
|
||||
pi = fluid.layers.softmax(logits_pi, axis=-1)
|
||||
comp_samples = fluid.layers.sampling_id(pi)
|
||||
|
||||
row_idx = dg.to_variable(np.arange(batch * length))
|
||||
comp_samples = fluid.layers.stack([row_idx, comp_samples], axis=-1)
|
||||
|
||||
mu_comp = fluid.layers.gather_nd(mu, comp_samples)
|
||||
s_comp = fluid.layers.gather_nd(s, comp_samples)
|
||||
|
||||
# N(0, 1) Normal Sample.
|
||||
u = fluid.layers.gaussian_random(shape=[batch * length])
|
||||
samples = mu_comp + u * s_comp
|
||||
samples = fluid.layers.clip(samples, min=-1.0, max=1.0)
|
||||
|
||||
return samples
|
||||
|
||||
def softmax_loss(self, targets, mix_parameters):
|
||||
# targets: [bs, 13799] -> [bs, 11752]
|
||||
# mix_params: [bs, 13799, 3] -> [bs, 11752, 3]
|
||||
targets = targets[:, self.context_size:]
|
||||
mix_parameters = mix_parameters[:, self.context_size:, :]
|
||||
|
||||
# Quantized audios to integral values with range [0, num_channels)
|
||||
num_channels = self.config.num_channels
|
||||
targets = fluid.layers.clip(targets, min=-1.0, max=0.99999)
|
||||
quantized = fluid.layers.cast(
|
||||
(targets + 1.0) / 2.0 * num_channels, dtype="int64")
|
||||
|
||||
# per_sample_loss shape: [bs, 17952, 1]
|
||||
per_sample_loss = fluid.layers.softmax_with_cross_entropy(
|
||||
logits=mix_parameters, label=fluid.layers.unsqueeze(quantized, 2))
|
||||
loss = fluid.layers.reduce_mean(per_sample_loss)
|
||||
#debug(loss, "softmax loss", self.rank)
|
||||
|
||||
return loss
|
||||
|
||||
def mixture_density_loss(self, targets, mix_parameters, log_scale_min):
|
||||
# targets: [bs, 13799] -> [bs, 11752]
|
||||
# mix_params: [bs, 13799, 3] -> [bs, 11752, 3]
|
||||
targets = targets[:, self.context_size:]
|
||||
mix_parameters = mix_parameters[:, self.context_size:, :]
|
||||
|
||||
# log_s: [bs, 11752, num_mixture]
|
||||
logits_pi, mu, log_s = fluid.layers.split(mix_parameters, num_or_sections=3, dim=-1)
|
||||
|
||||
pi = fluid.layers.softmax(logits_pi, axis=-1)
|
||||
log_s = fluid.layers.clip(log_s, min=log_scale_min, max=100.0)
|
||||
inv_s = fluid.layers.exp(0.0 - log_s)
|
||||
|
||||
# Calculate gaussian loss.
|
||||
targets = fluid.layers.unsqueeze(targets, -1)
|
||||
targets = fluid.layers.expand(targets, [1, 1, self.config.num_mixtures])
|
||||
x_std = inv_s * (targets - mu)
|
||||
exponent = fluid.layers.exp(-0.5 * x_std * x_std)
|
||||
# pdf_x: [bs, 11752, 1]
|
||||
pdf_x = 1.0 / np.sqrt(2.0 * np.pi) * inv_s * exponent
|
||||
pdf_x = pi * pdf_x
|
||||
# pdf_x: [bs, 11752]
|
||||
pdf_x = fluid.layers.reduce_sum(pdf_x, dim=-1)
|
||||
per_sample_loss = 0.0 - fluid.layers.log(pdf_x + 1e-9)
|
||||
|
||||
loss = fluid.layers.reduce_mean(per_sample_loss)
|
||||
|
||||
return loss
|
||||
|
||||
def forward(self, audios, mels, audio_starts, sample=False):
|
||||
# audios: [bs, 13800], mels: [bs, full_frame_length, 80]
|
||||
# audio_starts: [bs]
|
||||
# Build conditioner based on mels.
|
||||
full_conditioner = self.conditioner(mels)
|
||||
|
||||
# Slice conditioners.
|
||||
audio_length = audios.shape[1]
|
||||
conditioner = extract_slices(full_conditioner,
|
||||
audio_starts, audio_length, self.rank)
|
||||
|
||||
# input_audio, target_audio: [bs, 13799]
|
||||
input_audios = audios[:, :-1]
|
||||
target_audios = audios[:, 1:]
|
||||
# conditioner: [bs, 13799, 80]
|
||||
conditioner = conditioner[:, 1:, :]
|
||||
|
||||
loss_type = self.config.loss_type
|
||||
|
||||
# layer_input: [bs, 13799, 128]
|
||||
if loss_type == "softmax":
|
||||
input_audios = fluid.layers.clip(
|
||||
input_audios, min=-1.0, max=0.99999)
|
||||
# quantized have values in [0, num_channels)
|
||||
quantized = fluid.layers.cast(
|
||||
(input_audios + 1.0) / 2.0 * self.config.num_channels,
|
||||
dtype="int64")
|
||||
layer_input = self.embedding_fc(fluid.layers.unsqueeze(quantized, 2))
|
||||
elif loss_type == "mix-gaussian-pdf":
|
||||
layer_input = self.embedding_fc(fluid.layers.unsqueeze(input_audios, 2))
|
||||
else:
|
||||
raise ValueError(
|
||||
"loss_type {} is unsupported!".format(loss_type))
|
||||
|
||||
# layer_input: [bs, res_channel, 1, 13799]
|
||||
layer_input = fluid.layers.unsqueeze(fluid.layers.transpose(layer_input, perm=[0, 2, 1]), 2)
|
||||
# conditioner: [bs, mel_bands, 1, 13799]
|
||||
conditioner = fluid.layers.unsqueeze(fluid.layers.transpose(conditioner, perm=[0, 2, 1]), 2)
|
||||
|
||||
# layer_input: [bs, res_channel, 1, 13799]
|
||||
# skip: [bs, res_channel, 1, 13799]
|
||||
skip = None
|
||||
for i, layer in enumerate(self.dilated_causal_convs):
|
||||
layer_input, skip = layer(layer_input, skip, conditioner)
|
||||
#debug(layer_input, "layer_input_" + str(i), self.rank)
|
||||
#debug(skip, "skip_" + str(i), self.rank)
|
||||
|
||||
# Reshape skip to [bs, 13799, res_channel]
|
||||
skip = fluid.layers.transpose(fluid.layers.squeeze(skip, [2]), perm=[0, 2, 1])
|
||||
#debug(skip, "skip", self.rank)
|
||||
|
||||
# mix_param: [bs, 13799, 3 * num_mixtures]
|
||||
mix_parameters = self.fc3(self.fc2(self.fc1(skip)))
|
||||
|
||||
# Sample teacher-forced audio.
|
||||
sample_audios = None
|
||||
if sample:
|
||||
if loss_type == "softmax":
|
||||
sample_audios = self.sample_softmax(mix_parameters)
|
||||
elif loss_type == "mix-gaussian-pdf":
|
||||
sample_audios = self.sample_mix_gaussian(mix_parameters)
|
||||
else:
|
||||
raise ValueError(
|
||||
"loss_type {} is unsupported!".format(loss_type))
|
||||
#debug(sample_audios, "sample_audios", self.rank)
|
||||
|
||||
# Calculate mix-gaussian density loss.
|
||||
# padding is all zero.
|
||||
# target_audio: [bs, 13799].
|
||||
# mix_params: [bs, 13799, 3].
|
||||
if loss_type == "softmax":
|
||||
loss = self.softmax_loss(target_audios, mix_parameters)
|
||||
elif loss_type == "mix-gaussian-pdf":
|
||||
loss = self.mixture_density_loss(target_audios,
|
||||
mix_parameters, self.log_scale_min)
|
||||
else:
|
||||
raise ValueError(
|
||||
"loss_type {} is unsupported!".format(loss_type))
|
||||
|
||||
#print("Rank {}, loss {}".format(self.rank, loss.numpy()))
|
||||
|
||||
return loss, sample_audios
|
||||
|
||||
def synthesize(self, mels):
|
||||
self.start_new_sequence()
|
||||
print("input mels shape", mels.shape)
|
||||
# mels: [bs=1, n_frames, 80]
|
||||
# conditioner: [1, n_frames * samples_per_frame, 80]
|
||||
# Should I move forward by one sample? No difference
|
||||
# Append context frame to mels
|
||||
bs, n_frames, mel_bands = mels.shape
|
||||
#num_pad_frames = int(np.ceil(self.context_size / self.config.fft_window_shift))
|
||||
#silence = fluid.layers.zeros(shape=[bs, num_pad_frames, mel_bands], dtype="float32")
|
||||
#inf_mels = fluid.layers.concat([silence, mels], axis=1)
|
||||
#print("padded mels shape", inf_mels.shape)
|
||||
|
||||
#conditioner = self.conditioner(inf_mels)[:, self.context_size:, :]
|
||||
conditioner = self.conditioner(mels)
|
||||
time_steps = conditioner.shape[1]
|
||||
print("Total steps", time_steps)
|
||||
|
||||
loss_type = self.config.loss_type
|
||||
audio_samples = []
|
||||
current_sample = fluid.layers.zeros(shape=[bs, 1, 1], dtype="float32")
|
||||
for i in range(time_steps):
|
||||
if i % 100 == 0:
|
||||
print("Step", i)
|
||||
|
||||
# convert from real value sample to audio embedding.
|
||||
# [bs, 1, 128]
|
||||
if loss_type == "softmax":
|
||||
current_sample = fluid.layers.clip(
|
||||
current_sample, min=-1.0, max=0.99999)
|
||||
# quantized have values in [0, num_channels)
|
||||
quantized = fluid.layers.cast(
|
||||
(current_sample + 1.0) / 2.0 * self.config.num_channels,
|
||||
dtype="int64")
|
||||
audio_input = self.embedding_fc(quantized)
|
||||
elif loss_type == "mix-gaussian-pdf":
|
||||
audio_input = self.embedding_fc(current_sample)
|
||||
else:
|
||||
raise ValueError(
|
||||
"loss_type {} is unsupported!".format(loss_type))
|
||||
|
||||
# [bs, 128, 1, 1]
|
||||
audio_input = fluid.layers.unsqueeze(fluid.layers.transpose(audio_input, perm=[0, 2, 1]), 2)
|
||||
# [bs, 80]
|
||||
cond_input = conditioner[:, i, :]
|
||||
# [bs, 80, 1, 1]
|
||||
cond_input = fluid.layers.reshape(
|
||||
cond_input, cond_input.shape + [1, 1])
|
||||
|
||||
skip = None
|
||||
for layer in self.dilated_causal_convs:
|
||||
audio_input, skip = layer.add_input(audio_input, skip, cond_input)
|
||||
|
||||
# [bs, 1, 128]
|
||||
skip = fluid.layers.transpose(fluid.layers.squeeze(skip, [2]), perm=[0, 2, 1])
|
||||
# [bs, 1, 3]
|
||||
mix_parameters = self.fc3(self.fc2(self.fc1(skip)))
|
||||
if loss_type == "softmax":
|
||||
sample = self.sample_softmax(mix_parameters)
|
||||
elif loss_type == "mix-gaussian-pdf":
|
||||
sample = self.sample_mix_gaussian(mix_parameters)
|
||||
else:
|
||||
raise ValueError(
|
||||
"loss_type {} is unsupported!".format(loss_type))
|
||||
audio_samples.append(sample)
|
||||
# [bs]
|
||||
current_sample = audio_samples[-1]
|
||||
# [bs, 1, 1]
|
||||
current_sample = fluid.layers.reshape(current_sample,
|
||||
current_sample.shape + [1, 1])
|
||||
|
||||
# syn_audio: (num_samples,)
|
||||
syn_audio = fluid.layers.concat(audio_samples, axis=0).numpy()
|
||||
|
||||
return syn_audio
|
||||
|
||||
def start_new_sequence(self):
|
||||
for layer in self.sublayers():
|
||||
if isinstance(layer, weight_norm.Conv1D):
|
||||
layer.start_new_sequence()
|
||||
|
||||
def save(self, iteration):
|
||||
utils.save_latest_parameters(self.checkpoint_dir, iteration,
|
||||
self.wavenet, self.optimizer)
|
||||
utils.save_latest_checkpoint(self.checkpoint_dir, iteration)
|
|
@ -0,0 +1,920 @@
|
|||
import math
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
import paddle.fluid.dygraph as dg
|
||||
from paddle import fluid
|
||||
from paddle.fluid import core
|
||||
from paddle.fluid.framework import Variable
|
||||
from paddle.fluid.initializer import Normal, Constant, NumpyArrayInitializer
|
||||
from paddle.fluid.layers import utils
|
||||
from six.moves import reduce
|
||||
|
||||
|
||||
def _norm(p, dim):
|
||||
"""Computes the norm over all dimensions except dim.
|
||||
It differs from pytorch implementation that it does not keep dim.
|
||||
This difference is related with the broadcast mechanism in paddle.
|
||||
Read elementeise_mul for more.
|
||||
"""
|
||||
if dim is None:
|
||||
return np.linalg.norm(p, ord=2, axis=None)
|
||||
elif dim == 0:
|
||||
p = np.reshape(p, newshape=(p.shape[0], -1))
|
||||
return np.linalg.norm(p, ord=2, axis=1)
|
||||
elif dim == p.ndim - 1:
|
||||
p = np.reshape(p, newshape=(-1, p.shape[-1]))
|
||||
return np.linalg.norm(p, ord=2, axis=0)
|
||||
else:
|
||||
perm = list(range(p.ndim))
|
||||
perm[0] = dim
|
||||
perm[dim] = 0
|
||||
return _norm(np.transpose(p, axes=perm))
|
||||
|
||||
|
||||
class Conv1D(dg.Layer):
|
||||
"""
|
||||
A convolution 1D block implemented with Conv2D. Form simplicity and
|
||||
ensuring the output has the same length as the input, it does not allow
|
||||
stride > 1.
|
||||
"""
|
||||
def __init__(self,
|
||||
name_scope,
|
||||
num_filters,
|
||||
filter_size=3,
|
||||
dilation=1,
|
||||
groups=None,
|
||||
causal=False,
|
||||
param_attr=None,
|
||||
bias_attr=None,
|
||||
use_cudnn=True,
|
||||
act=None,
|
||||
dtype="float32"):
|
||||
super(Conv1D, self).__init__(name_scope, dtype=dtype)
|
||||
|
||||
if causal:
|
||||
padding = dilation * (filter_size - 1)
|
||||
else:
|
||||
padding = (dilation * (filter_size - 1)) // 2
|
||||
|
||||
self.num_filters = num_filters
|
||||
self.filter_size = filter_size
|
||||
self.dilation = dilation
|
||||
self.causal = causal
|
||||
self.padding = padding
|
||||
self.act = act
|
||||
|
||||
self.conv = Conv2D(
|
||||
self.full_name(),
|
||||
num_filters=num_filters,
|
||||
filter_size=(1, filter_size),
|
||||
stride=(1, 1),
|
||||
dilation=(1, dilation),
|
||||
padding=(0, padding),
|
||||
groups=groups,
|
||||
param_attr=param_attr,
|
||||
bias_attr=bias_attr,
|
||||
use_cudnn=use_cudnn,
|
||||
act=act,
|
||||
dtype=dtype)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Args:
|
||||
x (Variable): Shape(B, C_in, 1, T), the input, where C_in means
|
||||
input channels.
|
||||
Returns:
|
||||
x (Variable): Shape(B, C_out, 1, T), the outputs, where C_out means
|
||||
output channels (num_filters).
|
||||
"""
|
||||
x = self.conv(x)
|
||||
if self.filter_size > 1:
|
||||
if self.causal:
|
||||
x = fluid.layers.slice(
|
||||
x, axes=[3], starts=[0], ends=[-self.padding])
|
||||
elif self.filter_size % 2 == 0:
|
||||
x = fluid.layers.slice(x, axes=[3], starts=[0], ends=[-1])
|
||||
return x
|
||||
|
||||
def start_new_sequence(self):
|
||||
self.temp_weight = None
|
||||
self.input_buffer = None
|
||||
|
||||
def add_input(self, x):
|
||||
"""
|
||||
Adding input for a time step and compute an output for a time step.
|
||||
|
||||
Args:
|
||||
x (Variable): Shape(B, C_in, 1, T), the input, where C_in means
|
||||
input channels, and T = 1.
|
||||
Returns:
|
||||
out (Variable): Shape(B, C_out, 1, T), the outputs, where C_out
|
||||
means output channels (num_filters), and T = 1.
|
||||
|
||||
"""
|
||||
if self.temp_weight is None:
|
||||
self.temp_weight = self._reshaped_weight()
|
||||
|
||||
window_size = 1 + (self.filter_size - 1) * self.dilation
|
||||
batch_size = x.shape[0]
|
||||
in_channels = x.shape[1]
|
||||
|
||||
if self.filter_size > 1:
|
||||
if self.input_buffer is None:
|
||||
self.input_buffer = fluid.layers.fill_constant(
|
||||
[batch_size, in_channels, 1, window_size - 1],
|
||||
dtype=x.dtype,
|
||||
value=0.0)
|
||||
else:
|
||||
self.input_buffer = self.input_buffer[:, :, :, 1:]
|
||||
self.input_buffer = fluid.layers.concat(
|
||||
[self.input_buffer, x], axis=3)
|
||||
x = self.input_buffer
|
||||
if self.dilation > 1:
|
||||
if not hasattr(self, "indices"):
|
||||
self.indices = dg.to_variable(
|
||||
np.arange(0, window_size, self.dilation))
|
||||
tmp = fluid.layers.transpose(
|
||||
self.input_buffer, perm=[3, 1, 2, 0])
|
||||
tmp = fluid.layers.gather(tmp, index=self.indices)
|
||||
tmp = fluid.layers.transpose(tmp, perm=[3, 1, 2, 0])
|
||||
x = tmp
|
||||
inputs = fluid.layers.reshape(
|
||||
x, shape=[batch_size, in_channels * 1 * self.filter_size])
|
||||
out = fluid.layers.matmul(inputs, self.temp_weight, transpose_y=True)
|
||||
out = fluid.layers.elementwise_add(out, self.conv._bias_param, axis=-1)
|
||||
out = fluid.layers.reshape(out, out.shape + [1, 1])
|
||||
out = self._helper.append_activation(out, act=self.act)
|
||||
return out
|
||||
|
||||
def _reshaped_weight(self):
|
||||
"""
|
||||
Get the linearized weight of convolution filter, cause it is by nature
|
||||
a matmul weight. And because the model uses weight norm, compute the
|
||||
weight by weight_v * weight_g to make it faster.
|
||||
Returns:
|
||||
weight_matrix (Variable): Shape(C_out, C_in * 1 * kernel_size)
|
||||
"""
|
||||
shape = self.conv._filter_param_v.shape
|
||||
matrix_shape = [shape[0], np.prod(shape[1:])]
|
||||
weight_matrix = fluid.layers.reshape(
|
||||
self.conv._filter_param_v, shape=matrix_shape)
|
||||
weight_matrix = fluid.layers.elementwise_mul(
|
||||
fluid.layers.l2_normalize(
|
||||
weight_matrix, axis=1),
|
||||
self.conv._filter_param_g,
|
||||
axis=0)
|
||||
return weight_matrix
|
||||
|
||||
|
||||
class FC(dg.Layer):
|
||||
"""
|
||||
**Fully Connected Layer**
|
||||
This function creates a fully connected layer in the network. It can take
|
||||
one or multiple tensors as its inputs(input can be a list of Variable, see
|
||||
Args in detail). It creates a pair of variables called (magnitude(g),
|
||||
direction(V)) for each input tensor. Elementwise_mul(V, g) represents a fully connected
|
||||
weight matrix from each input unit to each output unit.
|
||||
The fully connected layer multiplies each input tensor
|
||||
with its corresponding weight to produce an output Tensor with shape [M, `size`],
|
||||
where M is batch size. If multiple input tensors are given, the results of
|
||||
multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
|
||||
is not None, a bias variable will be created and added to the output.
|
||||
Finally, if activation is not None, it will be applied to the output as well.
|
||||
When the input is single tensor:
|
||||
.. math::
|
||||
Out = Act({X(normalize(V)g) + b})
|
||||
When the input are multiple tensors:
|
||||
.. math::
|
||||
Out = Act({\sum_{i=0}^{N-1}X_i(V_ig_i) + b})
|
||||
In the above equation:
|
||||
* :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
|
||||
* :math:`X_i`: The i-th input tensor.
|
||||
* :math:`V_i`: The i-th direction matrix corresponding i-th input tensor.
|
||||
* :math:`g_i`: The i-th magnitude vector corresponding i-th input tensor.
|
||||
* :math:`b`: The bias parameter created by this layer (if needed).
|
||||
* :math:`Act`: The activation function.
|
||||
* :math:`Out`: The output tensor.
|
||||
See below for an example.
|
||||
.. code-block:: text
|
||||
Given:
|
||||
data_1.data = [[[0.1, 0.2],
|
||||
[0.3, 0.4]]]
|
||||
data_1.shape = (1, 2, 2) # 1 is batch_size
|
||||
data_2 = [[[0.1, 0.2, 0.3]]]
|
||||
data_2.shape = (1, 1, 3)
|
||||
out = fluid.layers.fc(input=[data_1, data_2], size=2)
|
||||
Then:
|
||||
out.data = [[0.18669507, 0.1893476]]
|
||||
out.shape = (1, 2)
|
||||
Args:
|
||||
name_scope(str): The name of this class.
|
||||
size(int): The number of output units in this layer.
|
||||
num_flatten_dims (int): The fc layer can accept an input tensor with more than
|
||||
two dimensions. If this happens, the multidimensional tensor will first be flattened
|
||||
into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
|
||||
tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
|
||||
dimensions will be flatten to form the first dimension of the final matrix (height of
|
||||
the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
|
||||
form the second dimension of the final matrix (width of the matrix). For example, suppose
|
||||
`X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
|
||||
Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1
|
||||
param_attr (ParamAttr|list of ParamAttr|None): The parameter attribute for learnable
|
||||
parameters/weights of this layer.
|
||||
bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
|
||||
of this layer. If it is set to False, no bias will be added to the output units.
|
||||
If it is set to None, the bias is initialized zero. Default: None.
|
||||
act (str|None): Activation to be applied to the output of this layer.
|
||||
is_test(bool): A flag indicating whether execution is in test phase. Default: False
|
||||
dtype(str): Dtype used for weight
|
||||
Raises:
|
||||
ValueError: If rank of the input tensor is less than 2.
|
||||
Examples:
|
||||
.. code-block:: python
|
||||
from paddle.fluid.dygraph.base import to_variable
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.dygraph import FC
|
||||
import numpy as np
|
||||
data = np.random.uniform( -1, 1, [30, 10, 32] ).astype('float32')
|
||||
with fluid.dygraph.guard():
|
||||
fc = FC( "fc", 64, num_flatten_dims=2)
|
||||
data = to_variable( data )
|
||||
conv = fc( data )
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
name_scope,
|
||||
size,
|
||||
num_flatten_dims=1,
|
||||
epsilon=1e-30,
|
||||
param_attr=None,
|
||||
bias_attr=None,
|
||||
act=None,
|
||||
is_test=False,
|
||||
dtype="float32"):
|
||||
super(FC, self).__init__(name_scope, dtype)
|
||||
|
||||
self._size = size
|
||||
self._num_flatten_dims = num_flatten_dims
|
||||
self._epsilon = epsilon
|
||||
self._dtype = dtype
|
||||
self._param_attr = param_attr
|
||||
self._bias_attr = bias_attr
|
||||
self._act = act
|
||||
self.__g = list()
|
||||
self.__v = list()
|
||||
|
||||
@property
|
||||
def _v(self, i=0):
|
||||
return self.__v[i]
|
||||
|
||||
@property
|
||||
def _g(self, i=0):
|
||||
return self.__g[i]
|
||||
|
||||
@_v.setter
|
||||
def _v(self, value, i=0):
|
||||
assert isinstance(value, Parameter)
|
||||
self.__v[i] = value
|
||||
|
||||
@_g.setter
|
||||
def _g(self, value, i=0):
|
||||
assert isinstance(value, Parameter)
|
||||
self.__g[i] = value
|
||||
|
||||
def _build_once(self, input):
|
||||
i = 0
|
||||
for inp, param in self._helper.iter_inputs_and_params(
|
||||
input, self._param_attr):
|
||||
input_shape = inp.shape
|
||||
|
||||
param_shape = [
|
||||
reduce(lambda a, b: a * b,
|
||||
input_shape[self._num_flatten_dims:], 1)
|
||||
] + [self._size]
|
||||
self.__v.append(
|
||||
self.add_parameter(
|
||||
"_v%d" % i,
|
||||
self.create_parameter(
|
||||
attr=param,
|
||||
shape=param_shape,
|
||||
dtype=self._dtype,
|
||||
is_bias=False)))
|
||||
|
||||
magnitude_shape = param_shape[1:]
|
||||
magnitude_value = np.linalg.norm(
|
||||
self.__v[i].numpy(), ord=2, axis=0)
|
||||
|
||||
self.__g.append(
|
||||
self.add_parameter(
|
||||
"_g%d" % i,
|
||||
self.create_parameter(
|
||||
attr=fluid.ParamAttr(initializer=fluid.initializer.
|
||||
NumpyArrayInitializer(
|
||||
magnitude_value)),
|
||||
shape=magnitude_shape,
|
||||
dtype=self._dtype,
|
||||
is_bias=False)))
|
||||
i += 1
|
||||
|
||||
size = list([self._size])
|
||||
self._b = self.create_parameter(
|
||||
attr=self._bias_attr, shape=size, dtype=self._dtype, is_bias=True)
|
||||
|
||||
def forward(self, input):
|
||||
mul_results = list()
|
||||
i = 0
|
||||
for inp, param in self._helper.iter_inputs_and_params(
|
||||
input, self._param_attr):
|
||||
v_norm = self._helper.create_variable_for_type_inference(
|
||||
self._dtype)
|
||||
v_normalized = self._helper.create_variable_for_type_inference(
|
||||
self._dtype)
|
||||
self._helper.append_op(
|
||||
type="norm",
|
||||
inputs={"X": self.__v[i]},
|
||||
outputs={"Out": v_normalized,
|
||||
"Norm": v_norm},
|
||||
attrs={"axis": 0,
|
||||
"epsilon": self._epsilon})
|
||||
weight = self._helper.create_variable_for_type_inference(
|
||||
self._dtype)
|
||||
self._helper.append_op(
|
||||
type="elementwise_mul",
|
||||
inputs={"X": [v_normalized],
|
||||
"Y": [self.__g[i]]},
|
||||
outputs={"Out": [weight]},
|
||||
attrs={"axis": 1})
|
||||
tmp = self._helper.create_variable_for_type_inference(self._dtype)
|
||||
self._helper.append_op(
|
||||
type="mul",
|
||||
inputs={"X": inp,
|
||||
"Y": weight},
|
||||
outputs={"Out": tmp},
|
||||
attrs={
|
||||
"x_num_col_dims": self._num_flatten_dims,
|
||||
"y_num_col_dims": 1
|
||||
})
|
||||
i += 1
|
||||
mul_results.append(tmp)
|
||||
|
||||
if len(mul_results) == 1:
|
||||
pre_bias = mul_results[0]
|
||||
else:
|
||||
pre_bias = self._helper.create_variable_for_type_inference(
|
||||
self._dtype)
|
||||
self._helper.append_op(
|
||||
type="sum",
|
||||
inputs={"X": mul_results},
|
||||
outputs={"Out": pre_bias},
|
||||
attrs={"use_mkldnn": False})
|
||||
|
||||
if self._b:
|
||||
pre_activation = self._helper.create_variable_for_type_inference(
|
||||
dtype=self._dtype)
|
||||
self._helper.append_op(
|
||||
type="elementwise_add",
|
||||
inputs={"X": [pre_bias],
|
||||
"Y": [self._b]},
|
||||
outputs={"Out": [pre_activation]},
|
||||
attrs={"axis": self._num_flatten_dims})
|
||||
else:
|
||||
pre_activation = pre_bias
|
||||
# Currently, we don't support inplace in dygraph mode
|
||||
return self._helper.append_activation(pre_activation, act=self._act)
|
||||
|
||||
|
||||
class Conv2D(dg.Layer):
|
||||
"""
|
||||
The convolution2D layer calculates the output based on the input, filter
|
||||
and strides, paddings, dilations, groups parameters. Input and
|
||||
Output are in NCHW format, where N is batch size, C is the number of
|
||||
channels, H is the height of the feature, and W is the width of the feature.
|
||||
Filter is in MCHW format, where M is the number of output image channels,
|
||||
C is the number of input image channels, H is the height of the filter,
|
||||
and W is the width of the filter. If the groups is greater than 1,
|
||||
C will equal the number of input image channels divided by the groups.
|
||||
Please refer to UFLDL's `convolution
|
||||
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`
|
||||
for more detials.
|
||||
If bias attribution and activation type are provided, bias is added to the
|
||||
output of the convolution, and the corresponding activation function is
|
||||
applied to the final result.
|
||||
For each input :math:`X`, the equation is:
|
||||
.. math::
|
||||
Out = \sigma ((Vg) \\ast X + b)
|
||||
Where:
|
||||
* :math:`X`: Input value, a tensor with NCHW format.
|
||||
* :math:`V`: Filter direction value, a tensor with MCHW format.
|
||||
* :math:`g`: Filter magnitude value, a tensor with M format.
|
||||
* :math:`\\ast`: Convolution operation.
|
||||
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
|
||||
* :math:`\\sigma`: Activation function.
|
||||
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
|
||||
Example:
|
||||
- Input:
|
||||
Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
|
||||
Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
|
||||
- Output:
|
||||
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
|
||||
Where
|
||||
.. math::
|
||||
H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
|
||||
W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
|
||||
Args:
|
||||
name_scope(str) : The name for this class.
|
||||
num_filters(int): The number of filter. It is as same as the output
|
||||
image channel.
|
||||
filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
|
||||
it must contain two integers, (filter_size_H, filter_size_W).
|
||||
Otherwise, the filter will be a square.
|
||||
stride (int|tuple): The stride size. If stride is a tuple, it must
|
||||
contain two integers, (stride_H, stride_W). Otherwise, the
|
||||
stride_H = stride_W = stride. Default: stride = 1.
|
||||
padding (int|tuple): The padding size. If padding is a tuple, it must
|
||||
contain two integers, (padding_H, padding_W). Otherwise, the
|
||||
padding_H = padding_W = padding. Default: padding = 0.
|
||||
dilation (int|tuple): The dilation size. If dilation is a tuple, it must
|
||||
contain two integers, (dilation_H, dilation_W). Otherwise, the
|
||||
dilation_H = dilation_W = dilation. Default: dilation = 1.
|
||||
groups (int): The groups number of the Conv2d Layer. According to grouped
|
||||
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
|
||||
the first half of the filters is only connected to the first half
|
||||
of the input channels, while the second half of the filters is only
|
||||
connected to the second half of the input channels. Default: groups=1.
|
||||
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
|
||||
of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
|
||||
will create ParamAttr as param_attr. If the Initializer of the param_attr
|
||||
is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
|
||||
and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
|
||||
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
|
||||
If it is set to False, no bias will be added to the output units.
|
||||
If it is set to None or one attribute of ParamAttr, conv2d
|
||||
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
|
||||
is not set, the bias is initialized zero. Default: None.
|
||||
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
|
||||
library is installed. Default: True
|
||||
act (str): Activation type, if it is set to None, activation is not appended.
|
||||
Default: None
|
||||
Raises:
|
||||
ValueError: If the shapes of input, filter_size, stride, padding and
|
||||
groups mismatch.
|
||||
Examples:
|
||||
.. code-block:: python
|
||||
from paddle.fluid.dygraph.base import to_variable
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.dygraph import Conv2D
|
||||
import numpy as np
|
||||
data = np.random.uniform( -1, 1, [10, 3, 32, 32] ).astype('float32')
|
||||
with fluid.dygraph.guard():
|
||||
conv2d = Conv2D( "conv2d", 2, 3)
|
||||
data = to_variable( data )
|
||||
conv = conv2d( data )
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
name_scope,
|
||||
num_filters,
|
||||
filter_size,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
groups=None,
|
||||
param_attr=None,
|
||||
bias_attr=None,
|
||||
use_cudnn=True,
|
||||
act=None,
|
||||
epsilon=1e-30,
|
||||
dtype="float32"):
|
||||
assert param_attr is not False, "param_attr should not be False here."
|
||||
super(Conv2D, self).__init__(name_scope, dtype)
|
||||
self._groups = groups
|
||||
self._stride = utils.convert_to_list(stride, 2, "stride")
|
||||
self._padding = utils.convert_to_list(padding, 2, "padding")
|
||||
self._dilation = utils.convert_to_list(dilation, 2, "dilation")
|
||||
self._act = act
|
||||
if not isinstance(use_cudnn, bool):
|
||||
raise ValueError("use_cudnn should be True or False")
|
||||
self._use_cudnn = use_cudnn
|
||||
self._filter_size = filter_size
|
||||
self._num_filters = num_filters
|
||||
self._param_attr = param_attr
|
||||
self._bias_attr = bias_attr
|
||||
self._epsilon = epsilon
|
||||
self._dtype = dtype
|
||||
# if (self._num_channels == self._groups and
|
||||
# num_filters % self._num_channels == 0 and not self._use_cudnn):
|
||||
# self._l_type = 'depthwise_conv2d'
|
||||
# else:
|
||||
# TODO(jiabin): recover the usage of depthwise_conv2d when it's
|
||||
# kernel fixed https://github.com/PaddlePaddle/Paddle/issues/17275
|
||||
self._l_type = "conv2d"
|
||||
|
||||
def _build_once(self, input):
|
||||
self._num_channels = input.shape[1]
|
||||
if self._groups is None:
|
||||
num_filter_channels = self._num_channels
|
||||
else:
|
||||
if self._num_channels % self._groups != 0:
|
||||
raise ValueError("num_channels must be divisible by groups.")
|
||||
num_filter_channels = self._num_channels // self._groups
|
||||
filter_size = utils.convert_to_list(self._filter_size, 2,
|
||||
"filter_size")
|
||||
filter_shape = [self._num_filters, int(num_filter_channels)
|
||||
] + filter_size
|
||||
|
||||
def _get_default_param_initializer():
|
||||
filter_elem_num = filter_size[0] * filter_size[
|
||||
1] * self._num_channels
|
||||
std = (2.0 / filter_elem_num)**0.5
|
||||
return Normal(0.0, std, 0)
|
||||
|
||||
# weight_v
|
||||
self._filter_param_v = self.create_parameter(
|
||||
attr=self._param_attr,
|
||||
shape=filter_shape,
|
||||
dtype=self._dtype,
|
||||
default_initializer=_get_default_param_initializer())
|
||||
|
||||
# weight_g
|
||||
norm_value = _norm(
|
||||
self._filter_param_v.numpy(), dim=0) # CAUTION: hard-code
|
||||
self._filter_param_g = self.create_parameter(
|
||||
attr=fluid.ParamAttr(
|
||||
initializer=fluid.initializer.NumpyArrayInitializer(
|
||||
norm_value)),
|
||||
shape=norm_value.shape,
|
||||
dtype=self._dtype,
|
||||
default_initializer=_get_default_param_initializer())
|
||||
|
||||
if self._use_cudnn:
|
||||
self.create_variable(
|
||||
name="kCUDNNFwdAlgoCache",
|
||||
persistable=True,
|
||||
type=core.VarDesc.VarType.RAW)
|
||||
self.create_variable(
|
||||
name="kCUDNNBwdDataAlgoCache",
|
||||
persistable=True,
|
||||
type=core.VarDesc.VarType.RAW)
|
||||
self.create_variable(
|
||||
name="kCUDNNBwdFilterAlgoCache",
|
||||
persistable=True,
|
||||
type=core.VarDesc.VarType.RAW)
|
||||
|
||||
self._bias_param = self.create_parameter(
|
||||
attr=self._bias_attr,
|
||||
shape=[self._num_filters],
|
||||
dtype=self._dtype,
|
||||
is_bias=True)
|
||||
|
||||
def forward(self, input):
|
||||
matrix = self._helper.create_variable_for_type_inference(self._dtype)
|
||||
tmp = self._helper.create_variable_for_type_inference(self._dtype)
|
||||
new_shape = [
|
||||
self._filter_param_v.shape[0],
|
||||
reduce(lambda x, y: x * y, self._filter_param_v.shape[1:], 1),
|
||||
]
|
||||
|
||||
self._helper.append_op(
|
||||
type="reshape2",
|
||||
inputs={"X": self._filter_param_v},
|
||||
attrs={"shape": new_shape},
|
||||
outputs={"Out": matrix,
|
||||
"XShape": tmp})
|
||||
|
||||
m_norm = self._helper.create_variable_for_type_inference(self._dtype)
|
||||
m_normalized = self._helper.create_variable_for_type_inference(
|
||||
self._dtype)
|
||||
self._helper.append_op(
|
||||
type="norm",
|
||||
inputs={"X": matrix},
|
||||
outputs={"Out": m_normalized,
|
||||
"Norm": m_norm},
|
||||
attrs={"axis": 1,
|
||||
"epsilon": self._epsilon})
|
||||
|
||||
v_normalized = self._helper.create_variable_for_type_inference(
|
||||
self._dtype)
|
||||
tmp2 = self._helper.create_variable_for_type_inference(self._dtype)
|
||||
self._helper.append_op(
|
||||
type="reshape2",
|
||||
inputs={"X": m_normalized},
|
||||
attrs={"shape": self._filter_param_v.shape},
|
||||
outputs={"Out": v_normalized,
|
||||
"XShape": tmp2})
|
||||
|
||||
filter_param = self._helper.create_variable_for_type_inference(
|
||||
self._dtype)
|
||||
self._helper.append_op(
|
||||
type="elementwise_mul",
|
||||
inputs={"X": [v_normalized],
|
||||
"Y": [self._filter_param_g]},
|
||||
outputs={"Out": [filter_param]},
|
||||
attrs={"axis": 0}, # CAUTION: hard-code
|
||||
)
|
||||
|
||||
pre_bias = self._helper.create_variable_for_type_inference(
|
||||
dtype=self._dtype)
|
||||
|
||||
self._helper.append_op(
|
||||
type=self._l_type,
|
||||
inputs={"Input": input,
|
||||
"Filter": filter_param},
|
||||
outputs={"Output": pre_bias},
|
||||
attrs={
|
||||
"strides": self._stride,
|
||||
"paddings": self._padding,
|
||||
"dilations": self._dilation,
|
||||
"groups": self._groups if self._groups else 1,
|
||||
"use_cudnn": self._use_cudnn,
|
||||
"use_mkldnn": False,
|
||||
})
|
||||
|
||||
if self._bias_param is not None:
|
||||
pre_act = self._helper.create_variable_for_type_inference(
|
||||
dtype=self._dtype)
|
||||
self._helper.append_op(
|
||||
type="elementwise_add",
|
||||
inputs={"X": [pre_bias],
|
||||
"Y": [self._bias_param]},
|
||||
outputs={"Out": [pre_act]},
|
||||
attrs={"axis": 1})
|
||||
else:
|
||||
pre_act = pre_bias
|
||||
|
||||
# Currently, we don't support inplace in dygraph mode
|
||||
return self._helper.append_activation(pre_act, act=self._act)
|
||||
|
||||
|
||||
class Conv2DTranspose(dg.Layer):
|
||||
"""
|
||||
**Convlution2D transpose layer**
|
||||
The convolution2D transpose layer calculates the output based on the input,
|
||||
filter, and dilations, strides, paddings. Input(Input) and output(Output)
|
||||
are in NCHW format. Where N is batch size, C is the number of channels,
|
||||
H is the height of the feature, and W is the width of the feature.
|
||||
Parameters(dilations, strides, paddings) are two elements. These two elements
|
||||
represent height and width, respectively. The details of convolution transpose
|
||||
layer, please refer to the following explanation and references
|
||||
`therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
|
||||
If bias attribution and activation type are provided, bias is added to
|
||||
the output of the convolution, and the corresponding activation function
|
||||
is applied to the final result.
|
||||
For each input :math:`X`, the equation is:
|
||||
.. math::
|
||||
Out = \sigma ((Vg) \\ast X + b)
|
||||
Where:
|
||||
* :math:`X`: Input value, a tensor with NCHW format.
|
||||
* :math:`V`: Filter value, a tensor with MCHW format.
|
||||
* :math:`g`: Filter value, a tensor with M format.
|
||||
* :math:`\\ast`: Convolution operation.
|
||||
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
|
||||
* :math:`\\sigma`: Activation function.
|
||||
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
|
||||
Example:
|
||||
- Input:
|
||||
Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
|
||||
Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
|
||||
- Output:
|
||||
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
|
||||
Where
|
||||
.. math::
|
||||
H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
|
||||
W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
|
||||
H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
|
||||
W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
|
||||
Args:
|
||||
name_scope(str): The name of this class.
|
||||
num_filters(int): The number of the filter. It is as same as the output
|
||||
image channel.
|
||||
output_size(int|tuple|None): The output image size. If output size is a
|
||||
tuple, it must contain two integers, (image_H, image_W). None if use
|
||||
filter_size, padding, and stride to calculate output_size.
|
||||
if output_size and filter_size are specified at the same time, They
|
||||
should follow the formula above. Default: None.
|
||||
filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
|
||||
it must contain two integers, (filter_size_H, filter_size_W).
|
||||
Otherwise, the filter will be a square. None if use output size to
|
||||
calculate filter_size. Default: None.
|
||||
padding(int|tuple): The padding size. If padding is a tuple, it must
|
||||
contain two integers, (padding_H, padding_W). Otherwise, the
|
||||
padding_H = padding_W = padding. Default: padding = 0.
|
||||
stride(int|tuple): The stride size. If stride is a tuple, it must
|
||||
contain two integers, (stride_H, stride_W). Otherwise, the
|
||||
stride_H = stride_W = stride. Default: stride = 1.
|
||||
dilation(int|tuple): The dilation size. If dilation is a tuple, it must
|
||||
contain two integers, (dilation_H, dilation_W). Otherwise, the
|
||||
dilation_H = dilation_W = dilation. Default: dilation = 1.
|
||||
groups(int): The groups number of the Conv2d transpose layer. Inspired by
|
||||
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
|
||||
when group=2, the first half of the filters is only connected to the
|
||||
first half of the input channels, while the second half of the
|
||||
filters is only connected to the second half of the input channels.
|
||||
Default: groups = 1.
|
||||
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
|
||||
of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
|
||||
will create ParamAttr as param_attr. If the Initializer of the param_attr
|
||||
is not set, the parameter is initialized with Xavier. Default: None.
|
||||
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
|
||||
If it is set to False, no bias will be added to the output units.
|
||||
If it is set to None or one attribute of ParamAttr, conv2d_transpose
|
||||
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
|
||||
is not set, the bias is initialized zero. Default: None.
|
||||
use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
|
||||
library is installed. Default: True.
|
||||
act (str): Activation type, if it is set to None, activation is not appended.
|
||||
Default: None.
|
||||
Returns:
|
||||
Variable: The tensor variable storing the convolution transpose result.
|
||||
Raises:
|
||||
ValueError: If the shapes of input, filter_size, stride, padding and
|
||||
groups mismatch.
|
||||
Examples:
|
||||
.. code-block:: python
|
||||
import paddle.fluid as fluid
|
||||
import numpy
|
||||
with fluid.dygraph.guard():
|
||||
data = numpy.random.random((3, 32, 32)).astype('float32')
|
||||
conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
|
||||
'Conv2DTranspose', num_filters=2, filter_size=3)
|
||||
ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
name_scope,
|
||||
num_filters,
|
||||
output_size=None,
|
||||
filter_size=None,
|
||||
padding=0,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
groups=None,
|
||||
param_attr=None,
|
||||
bias_attr=None,
|
||||
use_cudnn=True,
|
||||
epsilon=1e-30,
|
||||
act=None,
|
||||
dtype="float32"):
|
||||
super(Conv2DTranspose, self).__init__(name_scope, dtype)
|
||||
assert (param_attr is not False
|
||||
), "param_attr should not be False in conv2d_transpose."
|
||||
self._param_attr = param_attr
|
||||
self._bias_attr = bias_attr
|
||||
self._groups = groups
|
||||
self._num_filters = num_filters
|
||||
self._use_cudnn = use_cudnn
|
||||
self._padding = padding
|
||||
self._stride = stride
|
||||
self._dilation = dilation
|
||||
self._filter_size = filter_size
|
||||
self._output_size = output_size
|
||||
self._op_type = "conv2d_transpose"
|
||||
self._epsilon = epsilon
|
||||
|
||||
def _build_once(self, input):
|
||||
input_channel = input.shape[1]
|
||||
if (input_channel == self._groups and
|
||||
self._num_filters == input_channel and not self._use_cudnn):
|
||||
self._op_type = "depthwise_conv2d_transpose"
|
||||
|
||||
if not isinstance(input, Variable):
|
||||
raise TypeError("Input of conv2d_transpose must be Variable")
|
||||
|
||||
self._padding = utils.convert_to_list(self._padding, 2, "padding")
|
||||
self._stride = utils.convert_to_list(self._stride, 2, "stride")
|
||||
self._dilation = utils.convert_to_list(self._dilation, 2, "dilation")
|
||||
|
||||
if not isinstance(self._use_cudnn, bool):
|
||||
raise ValueError("use_cudnn should be True or False")
|
||||
|
||||
if self._filter_size is None:
|
||||
if self._output_size is None:
|
||||
raise ValueError(
|
||||
"output_size must be set when filter_size is None")
|
||||
if isinstance(self._output_size, int):
|
||||
self._output_size = [self._output_size, self._output_size]
|
||||
|
||||
h_in = input.shape[2]
|
||||
w_in = input.shape[3]
|
||||
|
||||
filter_size_h = (self._output_size[0] -
|
||||
(h_in - 1) * self._stride[0] + 2 *
|
||||
self._padding[0] - 1) // self._dilation[0] + 1
|
||||
filter_size_w = (self._output_size[1] -
|
||||
(w_in - 1) * self._stride[1] + 2 *
|
||||
self._padding[1] - 1) // self._dilation[1] + 1
|
||||
self._filter_size = [filter_size_h, filter_size_w]
|
||||
else:
|
||||
self._filter_size = utils.convert_to_list(
|
||||
self._filter_size, 2, "conv2d_transpose.filter_size")
|
||||
|
||||
if self._output_size is None:
|
||||
self._output_size = []
|
||||
elif isinstance(self._output_size, list) or isinstance(
|
||||
self._output_size, int):
|
||||
self._output_size = utils.convert_to_list(self._output_size, 2,
|
||||
"output_size")
|
||||
else:
|
||||
raise ValueError("output_size should be list or int")
|
||||
self._padding = utils.convert_to_list(self._padding, 2, "padding")
|
||||
self._groups = 1 if self._groups is None else self._groups
|
||||
filter_shape = [
|
||||
input_channel,
|
||||
self._num_filters // self._groups,
|
||||
] + self._filter_size
|
||||
|
||||
# img filter v (direction)
|
||||
self._img_filter_v = self.create_parameter(
|
||||
dtype=input.dtype, shape=filter_shape, attr=self._param_attr)
|
||||
|
||||
# img filter g (magnitude)
|
||||
img_filter_magnitude = _norm(
|
||||
self._img_filter_v.numpy(), dim=0) # CAUTION: hard-code
|
||||
self._img_filter_g = self.create_parameter(
|
||||
dtype=input.dtype,
|
||||
shape=img_filter_magnitude.shape,
|
||||
attr=fluid.ParamAttr(
|
||||
initializer=NumpyArrayInitializer(img_filter_magnitude)))
|
||||
|
||||
self._img_bias = self.create_parameter(
|
||||
attr=self._bias_attr,
|
||||
shape=[self._num_filters],
|
||||
dtype=self._dtype,
|
||||
is_bias=True)
|
||||
|
||||
def forward(self, input):
|
||||
matrix = self._helper.create_variable_for_type_inference(self._dtype)
|
||||
tmp = self._helper.create_variable_for_type_inference(self._dtype)
|
||||
new_shape = [
|
||||
self._img_filter_v.shape[0],
|
||||
reduce(lambda x, y: x * y, self._img_filter_v.shape[1:], 1),
|
||||
]
|
||||
|
||||
self._helper.append_op(
|
||||
type="reshape2",
|
||||
inputs={"X": self._img_filter_v},
|
||||
attrs={"shape": new_shape},
|
||||
outputs={"Out": matrix,
|
||||
"XShape": tmp})
|
||||
|
||||
m_norm = self._helper.create_variable_for_type_inference(self._dtype)
|
||||
m_normalized = self._helper.create_variable_for_type_inference(
|
||||
self._dtype)
|
||||
self._helper.append_op(
|
||||
type="norm",
|
||||
inputs={"X": matrix},
|
||||
outputs={"Out": m_normalized,
|
||||
"Norm": m_norm},
|
||||
attrs={"axis": 1,
|
||||
"epsilon": self._epsilon})
|
||||
|
||||
v_normalized = self._helper.create_variable_for_type_inference(
|
||||
self._dtype)
|
||||
tmp2 = self._helper.create_variable_for_type_inference(self._dtype)
|
||||
self._helper.append_op(
|
||||
type="reshape2",
|
||||
inputs={"X": m_normalized},
|
||||
attrs={"shape": self._img_filter_v.shape},
|
||||
outputs={"Out": v_normalized,
|
||||
"XShape": tmp2})
|
||||
|
||||
img_filter = self._helper.create_variable_for_type_inference(
|
||||
self._dtype)
|
||||
self._helper.append_op(
|
||||
type="elementwise_mul",
|
||||
inputs={"X": [v_normalized],
|
||||
"Y": [self._img_filter_g]},
|
||||
outputs={"Out": [img_filter]},
|
||||
attrs={"axis": 0}, # CAUTION: hard-code
|
||||
)
|
||||
|
||||
pre_bias = self._helper.create_variable_for_type_inference(
|
||||
dtype=input.dtype)
|
||||
self._helper.append_op(
|
||||
type=self._op_type,
|
||||
inputs={"Input": [input],
|
||||
"Filter": [img_filter]},
|
||||
outputs={"Output": pre_bias},
|
||||
attrs={
|
||||
"output_size": self._output_size,
|
||||
"strides": self._stride,
|
||||
"paddings": self._padding,
|
||||
"dilations": self._dilation,
|
||||
"groups": self._groups,
|
||||
"use_cudnn": self._use_cudnn,
|
||||
})
|
||||
|
||||
if self._img_bias is not None:
|
||||
pre_act = self._helper.create_variable_for_type_inference(
|
||||
dtype=self._dtype)
|
||||
self._helper.append_op(
|
||||
type="elementwise_add",
|
||||
inputs={"X": [pre_bias],
|
||||
"Y": [self._img_bias]},
|
||||
outputs={"Out": [pre_act]},
|
||||
attrs={"axis": 1})
|
||||
else:
|
||||
pre_act = pre_bias
|
||||
|
||||
out = self._helper.append_activation(pre_act)
|
||||
return out
|
Loading…
Reference in New Issue