add numerical testing for PWGGenerator
This commit is contained in:
parent
83c9f0aeae
commit
b5f99a925f
|
@ -66,9 +66,14 @@ def test_convin_upsample_net():
|
||||||
out2.sum().backward()
|
out2.sum().backward()
|
||||||
print(f"torch conv_in_upsample_net backward takes {t.elapse}s.")
|
print(f"torch conv_in_upsample_net backward takes {t.elapse}s.")
|
||||||
|
|
||||||
|
print("forward check")
|
||||||
print(out.numpy()[0])
|
print(out.numpy()[0])
|
||||||
print(out2.data.cpu().numpy()[0])
|
print(out2.data.cpu().numpy()[0])
|
||||||
|
|
||||||
|
print("backward check")
|
||||||
|
print(net.conv_in.weight.numpy()[0])
|
||||||
|
print(net2.conv_in.weight.data.cpu().numpy()[0])
|
||||||
|
|
||||||
|
|
||||||
def test_residual_block():
|
def test_residual_block():
|
||||||
net = ResidualBlock(dilation=9)
|
net = ResidualBlock(dilation=9)
|
||||||
|
@ -137,14 +142,19 @@ def test_pwg_generator():
|
||||||
torch.cuda.synchronize()
|
torch.cuda.synchronize()
|
||||||
print(f"torch generator backward takes {t.elapse}s.")
|
print(f"torch generator backward takes {t.elapse}s.")
|
||||||
|
|
||||||
|
print("test forward:")
|
||||||
print(out.numpy()[0])
|
print(out.numpy()[0])
|
||||||
print(out2.data.cpu().numpy()[0])
|
print(out2.data.cpu().numpy()[0])
|
||||||
|
|
||||||
|
print("test backward:")
|
||||||
|
print(net.first_conv.weight.numpy()[0])
|
||||||
|
print(net2.first_conv.weight.data.cpu().numpy()[0])
|
||||||
# print(out.shape)
|
# print(out.shape)
|
||||||
|
|
||||||
|
|
||||||
def test_pwg_discriminator():
|
def test_pwg_discriminator():
|
||||||
net = PWGDiscriminator()
|
net = PWGDiscriminator()
|
||||||
net2 = pwgan.ParallelWaveGANDiscriminator()
|
net2 = pwgan.ParallelWaveGANDiscriminator().to(device)
|
||||||
summary(net)
|
summary(net)
|
||||||
summary(net2)
|
summary(net2)
|
||||||
for k, v in net2.named_parameters():
|
for k, v in net2.named_parameters():
|
||||||
|
@ -154,11 +164,39 @@ def test_pwg_discriminator():
|
||||||
else:
|
else:
|
||||||
p.set_value(v.data.cpu().numpy())
|
p.set_value(v.data.cpu().numpy())
|
||||||
x = paddle.randn([4, 1, 180 * 256])
|
x = paddle.randn([4, 1, 180 * 256])
|
||||||
|
|
||||||
|
synchronize()
|
||||||
|
with timer() as t:
|
||||||
y = net(x)
|
y = net(x)
|
||||||
y2 = net2(torch.as_tensor(x.numpy()))
|
synchronize()
|
||||||
|
print(f"forward takes {t.elapse}s.")
|
||||||
|
|
||||||
|
synchronize()
|
||||||
|
with timer() as t:
|
||||||
|
y.sum().backward()
|
||||||
|
synchronize()
|
||||||
|
print(f"backward takes {t.elapse}s.")
|
||||||
|
|
||||||
|
x_torch = torch.as_tensor(x.numpy()).to(device)
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
with timer() as t:
|
||||||
|
y2 = net2(x_torch)
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
print(f"forward takes {t.elapse}s.")
|
||||||
|
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
with timer() as t:
|
||||||
|
y2.sum().backward()
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
print(f"backward takes {t.elapse}s.")
|
||||||
|
|
||||||
|
print("test forward:")
|
||||||
print(y.numpy()[0])
|
print(y.numpy()[0])
|
||||||
print(y2.data.cpu().numpy()[0])
|
print(y2.data.cpu().numpy()[0])
|
||||||
print(y.shape)
|
|
||||||
|
print("test backward:")
|
||||||
|
print(net.conv_layers[0].weight.numpy()[0])
|
||||||
|
print(net2.conv_layers[0].weight.data.cpu().numpy()[0])
|
||||||
|
|
||||||
|
|
||||||
def test_residual_pwg_discriminator():
|
def test_residual_pwg_discriminator():
|
||||||
|
|
Loading…
Reference in New Issue