Merge pull request #55 from lfchener/reborn

fix EnglishCharacter frontend and add  spectrogram plots
This commit is contained in:
Feiyu Chan 2020-12-17 11:16:12 +08:00 committed by GitHub
commit b82217f50f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 41 additions and 29 deletions

View File

@ -29,4 +29,4 @@ def normalize(sentence):
sentence = re.sub(r"[^ a-z'.,?!\-]", "", sentence)
sentence = sentence.replace("i.e.", "that is")
sentence = sentence.replace("e.g.", "for example")
return sentence.split()
return sentence

View File

@ -79,23 +79,14 @@ class EnglishCharacter(Phonetics):
self.vocab = Vocab(self.graphemes + self.punctuations)
def phoneticize(self, sentence):
start = self.vocab.start_symbol
end = self.vocab.end_symbol
words = ([] if start is None else [start]) \
+ normalize(sentence) \
+ ([] if end is None else [end])
words = normalize(sentence)
return words
def numericalize(self, words):
ids = []
for word in words:
if word in self.vocab.stoi:
ids.append(self.vocab.lookup(word))
continue
for char in word:
if char in self.vocab.stoi:
ids.append(self.vocab.lookup(char))
def numericalize(self, sentence):
ids = [
self.vocab.lookup(item) for item in sentence
if item in self.vocab.stoi
]
return ids
def reverse(self, ids):

View File

@ -238,10 +238,7 @@ class Tacotron2Decoder(nn.Layer):
querys = paddle.concat(
[
paddle.zeros(
shape=[
querys.shape[0], 1,
querys.shape[-1] * self.reduction_factor
],
shape=[querys.shape[0], 1, querys.shape[-1]],
dtype=querys.dtype), querys
],
axis=1)
@ -266,7 +263,7 @@ class Tacotron2Decoder(nn.Layer):
return mel_outputs, stop_logits, alignments
def infer(self, key, stop_threshold=0.5, max_decoder_steps=1000):
decoder_input = paddle.zeros(
query = paddle.zeros(
shape=[key.shape[0], self.d_mels * self.reduction_factor],
dtype=key.dtype) #[B, C]
@ -275,8 +272,8 @@ class Tacotron2Decoder(nn.Layer):
mel_outputs, stop_logits, alignments = [], [], []
while True:
decoder_input = self.prenet(decoder_input)
mel_output, stop_logit, alignment = self._decode(decoder_input)
query = self.prenet(query)
mel_output, stop_logit, alignment = self._decode(query)
mel_outputs += [mel_output]
stop_logits += [stop_logit]
@ -288,7 +285,7 @@ class Tacotron2Decoder(nn.Layer):
print("Warning! Reached max decoder steps!!!")
break
decoder_input = mel_output
query = mel_output
alignments = paddle.stack(alignments, axis=1)
stop_logits = paddle.concat(stop_logits, axis=1)
@ -350,7 +347,7 @@ class Tacotron2(nn.Layer):
attention_kernel_size, p_prenet_dropout, p_attention_dropout,
p_decoder_dropout)
self.postnet = DecoderPostNet(
d_mels=d_mels,
d_mels=d_mels * reduction_factor,
d_hidden=d_postnet,
kernel_size=postnet_kernel_size,
padding=int((postnet_kernel_size - 1) / 2),

View File

@ -19,8 +19,11 @@ import matplotlib.pylab as plt
from matplotlib import cm, pyplot
__all__ = [
"pack_attention_images", "add_attention_plots", "plot_alignment",
"min_max_normalize"
"pack_attention_images",
"add_attention_plots",
"plot_alignment",
"min_max_normalize",
"add_spectrogram_plots",
]
@ -48,6 +51,13 @@ def pack_attention_images(attention_weights, rotate=False):
return img
def save_figure_to_numpy(fig):
# save it to a numpy array.
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3, ))
return data
def plot_alignment(alignment, title=None):
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.imshow(
@ -61,8 +71,7 @@ def plot_alignment(alignment, title=None):
plt.tight_layout()
fig.canvas.draw()
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3, ))
data = save_figure_to_numpy(fig)
plt.close()
return data
@ -83,5 +92,20 @@ def add_multi_attention_plots(writer, tag, attention_weights, global_step):
dataformats="HWC")
def add_spectrogram_plots(writer, tag, spec, global_step):
spec = spec.numpy().T
fig, ax = plt.subplots(figsize=(12, 3))
im = ax.imshow(spec, aspect="auto", origin="lower", interpolation='none')
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = save_figure_to_numpy(fig)
plt.close()
writer.add_image(tag, data, global_step, dataformats="HWC")
def min_max_normalize(v):
return (v - v.min()) / (v.max() - v.min())