# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Calculate statistics of feature files.""" import argparse import logging from pathlib import Path import jsonlines import numpy as np from sklearn.preprocessing import StandardScaler from tqdm import tqdm from parakeet.datasets.data_table import DataTable def main(): """Run preprocessing process.""" parser = argparse.ArgumentParser( description="Compute mean and variance of dumped raw features.") parser.add_argument( "--metadata", type=str, help="json file with id and file paths ") parser.add_argument( "--field-name", type=str, help="name of the field to compute statistics for.") parser.add_argument( "--output", type=str, help="path to save statistics. if not provided, " "stats will be saved in the above root directory with name stats.npy") parser.add_argument( "--verbose", type=int, default=1, help="logging level. higher is more logging. (default=1)") args = parser.parse_args() # set logger if args.verbose > 1: logging.basicConfig( level=logging.DEBUG, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s" ) elif args.verbose > 0: logging.basicConfig( level=logging.INFO, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s" ) else: logging.basicConfig( level=logging.WARN, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s" ) logging.warning('Skip DEBUG/INFO messages') # check directory existence if args.output is None: args.output = Path( args.metadata).parent.with_name(args.field_name + "_stats.npy") else: args.output = Path(args.output) args.output.parent.mkdir(parents=True, exist_ok=True) with jsonlines.open(args.metadata, 'r') as reader: metadata = list(reader) dataset = DataTable( metadata, fields=[args.field_name], converters={args.field_name: np.load}, ) logging.info(f"The number of files = {len(dataset)}.") # calculate statistics scaler = StandardScaler() for datum in tqdm(dataset): # StandardScalar supports (*, num_features) by default scaler.partial_fit(datum[args.field_name]) stats = np.stack([scaler.mean_, scaler.scale_], axis=0) np.save(str(args.output), stats.astype(np.float32), allow_pickle=False) if __name__ == "__main__": main()