# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from concurrent.futures import ThreadPoolExecutor from operator import itemgetter from pathlib import Path from typing import List, Dict, Any import jsonlines import librosa import numpy as np import tqdm import yaml from parakeet.data.get_feats import LogMelFBank, Energy, Pitch from yacs.config import CfgNode as Configuration # speaker|utt_id|phn dur phn dur ... def get_phn_dur(file_name): ''' read MFA duration.txt Parameters ---------- file_name : str or Path path of gen_duration_from_textgrid.py's result Returns ---------- Dict sentence: {'utt': ([char], [int])} ''' f = open(file_name, 'r') sentence = {} speaker_set = set() for line in f: line_list = line.strip().split('|') utt = line_list[0] speaker = line_list[1] p_d = line_list[-1] speaker_set.add(speaker) phn_dur = p_d.split() phn = phn_dur[::2] dur = phn_dur[1::2] assert len(phn) == len(dur) sentence[utt] = (phn, [int(i) for i in dur], speaker) f.close() return sentence, speaker_set def deal_silence(sentence): ''' merge silences, set Parameters ---------- sentence : Dict sentence: {'utt': (([char], [int]), str)} ''' for utt in sentence: cur_phn, cur_dur, speaker = sentence[utt] new_phn = [] new_dur = [] # merge sp and sil for i, p in enumerate(cur_phn): if i > 0 and 'sil' == p and cur_phn[i - 1] in {"sil", "sp"}: new_dur[-1] += cur_dur[i] new_phn[-1] = 'sil' else: new_phn.append(p) new_dur.append(cur_dur[i]) for i, (p, d) in enumerate(zip(new_phn, new_dur)): if p in {"sp"}: if d < 14: new_phn[i] = 'sp' else: new_phn[i] = 'spl' assert len(new_phn) == len(new_dur) sentence[utt] = [new_phn, new_dur, speaker] def get_input_token(sentence, output_path): ''' get phone set from training data and save it Parameters ---------- sentence : Dict sentence: {'utt': ([char], [int])} output_path : str or path path to save phone_id_map ''' phn_token = set() for utt in sentence: for phn in sentence[utt][0]: if phn != "": phn_token.add(phn) phn_token = list(phn_token) phn_token.sort() phn_token = ["", ""] + phn_token phn_token += [",", "。", "?", "!", ""] with open(output_path, 'w') as f: for i, phn in enumerate(phn_token): f.write(phn + ' ' + str(i) + '\n') def get_spk_id_map(speaker_set, output_path): speakers = sorted(list(speaker_set)) with open(output_path, 'w') as f: for i, spk in enumerate(speakers): f.write(spk + ' ' + str(i) + '\n') def compare_duration_and_mel_length(sentences, utt, mel): ''' check duration error, correct sentences[utt] if possible, else pop sentences[utt] Parameters ---------- sentences : Dict sentences[utt] = [phones_list ,durations_list] utt : str utt_id mel : np.ndarry features (num_frames, n_mels) ''' if utt in sentences: len_diff = mel.shape[0] - sum(sentences[utt][1]) if len_diff != 0: if len_diff > 0: sentences[utt][1][-1] += len_diff elif sentences[utt][1][-1] + len_diff > 0: sentences[utt][1][-1] += len_diff elif sentences[utt][1][0] + len_diff > 0: sentences[utt][1][0] += len_diff else: print("the len_diff is unable to correct:", len_diff) sentences.pop(utt) def process_sentence(config: Dict[str, Any], fp: Path, sentences: Dict, output_dir: Path, mel_extractor=None, pitch_extractor=None, energy_extractor=None, cut_sil: bool=True): utt_id = fp.stem record = None if utt_id in sentences: # reading, resampling may occur wav, _ = librosa.load(str(fp), sr=config.fs) if len(wav.shape) != 1 or np.abs(wav).max() > 1.0: return record assert len(wav.shape) == 1, f"{utt_id} is not a mono-channel audio." assert np.abs(wav).max( ) <= 1.0, f"{utt_id} is seems to be different that 16 bit PCM." phones = sentences[utt_id][0] durations = sentences[utt_id][1] speaker = sentences[utt_id][2] d_cumsum = np.pad(np.array(durations).cumsum(0), (1, 0), 'constant') # little imprecise than use *.TextGrid directly times = librosa.frames_to_time( d_cumsum, sr=config.fs, hop_length=config.n_shift) if cut_sil: start = 0 end = d_cumsum[-1] if phones[0] == "sil" and len(durations) > 1: start = times[1] durations = durations[1:] phones = phones[1:] if phones[-1] == 'sil' and len(durations) > 1: end = times[-2] durations = durations[:-1] phones = phones[:-1] sentences[utt_id][0] = phones sentences[utt_id][1] = durations start, end = librosa.time_to_samples([start, end], sr=config.fs) wav = wav[start:end] # extract mel feats logmel = mel_extractor.get_log_mel_fbank(wav) # change duration according to mel_length compare_duration_and_mel_length(sentences, utt_id, logmel) phones = sentences[utt_id][0] durations = sentences[utt_id][1] num_frames = logmel.shape[0] assert sum(durations) == num_frames mel_dir = output_dir / "data_speech" mel_dir.mkdir(parents=True, exist_ok=True) mel_path = mel_dir / (utt_id + "_speech.npy") np.save(mel_path, logmel) # extract pitch and energy f0 = pitch_extractor.get_pitch(wav, duration=np.array(durations)) assert f0.shape[0] == len(durations) f0_dir = output_dir / "data_pitch" f0_dir.mkdir(parents=True, exist_ok=True) f0_path = f0_dir / (utt_id + "_pitch.npy") np.save(f0_path, f0) energy = energy_extractor.get_energy(wav, duration=np.array(durations)) assert energy.shape[0] == len(durations) energy_dir = output_dir / "data_energy" energy_dir.mkdir(parents=True, exist_ok=True) energy_path = energy_dir / (utt_id + "_energy.npy") np.save(energy_path, energy) record = { "utt_id": utt_id, "phones": phones, "text_lengths": len(phones), "speech_lengths": num_frames, "durations": durations, # use absolute path "speech": str(mel_path.resolve()), "pitch": str(f0_path.resolve()), "energy": str(energy_path.resolve()), "speaker": speaker } return record def process_sentences(config, fps: List[Path], sentences: Dict, output_dir: Path, mel_extractor=None, pitch_extractor=None, energy_extractor=None, nprocs: int=1, cut_sil: bool=True): if nprocs == 1: results = [] for fp in tqdm.tqdm(fps, total=len(fps)): record = process_sentence(config, fp, sentences, output_dir, mel_extractor, pitch_extractor, energy_extractor, cut_sil) if record: results.append(record) else: with ThreadPoolExecutor(nprocs) as pool: futures = [] with tqdm.tqdm(total=len(fps)) as progress: for fp in fps: future = pool.submit(process_sentence, config, fp, sentences, output_dir, mel_extractor, pitch_extractor, energy_extractor, cut_sil) future.add_done_callback(lambda p: progress.update()) futures.append(future) results = [] for ft in futures: record = ft.result() if record: results.append(record) results.sort(key=itemgetter("utt_id")) with jsonlines.open(output_dir / "metadata.jsonl", 'w') as writer: for item in results: writer.write(item) print("Done") def main(): # parse config and args parser = argparse.ArgumentParser( description="Preprocess audio and then extract features.") parser.add_argument( "--dataset", default="baker", type=str, help="name of dataset, should in {baker, aishell3} now") parser.add_argument( "--rootdir", default=None, type=str, help="directory to dataset.") parser.add_argument( "--dur-file", default=None, type=str, help="path to baker durations.txt.") parser.add_argument( "--dumpdir", type=str, required=True, help="directory to dump feature files.") parser.add_argument( "--config-path", default="conf/default.yaml", type=str, help="yaml format configuration file.") parser.add_argument( "--verbose", type=int, default=1, help="logging level. higher is more logging. (default=1)") parser.add_argument( "--num-cpu", type=int, default=1, help="number of process.") def str2bool(str): return True if str.lower() == 'true' else False parser.add_argument( "--cut-sil", type=str2bool, default=True, help="whether cut sil in the edge of audio") args = parser.parse_args() config_path = Path(args.config_path).resolve() root_dir = Path(args.rootdir).expanduser() dumpdir = Path(args.dumpdir).expanduser() dumpdir.mkdir(parents=True, exist_ok=True) dur_file = Path(args.dur_file).expanduser() assert root_dir.is_dir() assert dur_file.is_file() with open(config_path, 'rt') as f: _C = yaml.safe_load(f) _C = Configuration(_C) config = _C.clone() if args.verbose > 1: print(vars(args)) print(config) sentences, speaker_set = get_phn_dur(dur_file) deal_silence(sentences) phone_id_map_path = dumpdir / "phone_id_map.txt" speaker_id_map_path = dumpdir / "speaker_id_map.txt" get_input_token(sentences, phone_id_map_path) get_spk_id_map(speaker_set, speaker_id_map_path) if args.dataset == "baker": wav_files = sorted(list((root_dir / "Wave").rglob("*.wav"))) # split data into 3 sections num_train = 9800 num_dev = 100 train_wav_files = wav_files[:num_train] dev_wav_files = wav_files[num_train:num_train + num_dev] test_wav_files = wav_files[num_train + num_dev:] elif args.dataset == "aishell3": sub_num_dev = 5 wav_dir = root_dir / "train" / "wav" train_wav_files = [] dev_wav_files = [] test_wav_files = [] for speaker in os.listdir(wav_dir): wav_files = sorted(list((wav_dir / speaker).rglob("*.wav"))) if len(wav_files) > 100: train_wav_files += wav_files[:-sub_num_dev * 2] dev_wav_files += wav_files[-sub_num_dev * 2:-sub_num_dev] test_wav_files += wav_files[-sub_num_dev:] else: train_wav_files += wav_files train_dump_dir = dumpdir / "train" / "raw" train_dump_dir.mkdir(parents=True, exist_ok=True) dev_dump_dir = dumpdir / "dev" / "raw" dev_dump_dir.mkdir(parents=True, exist_ok=True) test_dump_dir = dumpdir / "test" / "raw" test_dump_dir.mkdir(parents=True, exist_ok=True) # Extractor mel_extractor = LogMelFBank( sr=config.fs, n_fft=config.n_fft, hop_length=config.n_shift, win_length=config.win_length, window=config.window, n_mels=config.n_mels, fmin=config.fmin, fmax=config.fmax) pitch_extractor = Pitch( sr=config.fs, hop_length=config.n_shift, f0min=config.f0min, f0max=config.f0max) energy_extractor = Energy( sr=config.fs, n_fft=config.n_fft, hop_length=config.n_shift, win_length=config.win_length, window=config.window) # process for the 3 sections if train_wav_files: process_sentences( config, train_wav_files, sentences, train_dump_dir, mel_extractor, pitch_extractor, energy_extractor, nprocs=args.num_cpu, cut_sil=args.cut_sil) if dev_wav_files: process_sentences( config, dev_wav_files, sentences, dev_dump_dir, mel_extractor, pitch_extractor, energy_extractor, cut_sil=args.cut_sil) if test_wav_files: process_sentences( config, test_wav_files, sentences, test_dump_dir, mel_extractor, pitch_extractor, energy_extractor, nprocs=args.num_cpu, cut_sil=args.cut_sil) if __name__ == "__main__": main()