# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import librosa import soundfile as sf import numpy as np __all__ = ["AudioProcessor"] class AudioProcessor(object): def __init__(self, sample_rate: int, n_fft: int, win_length: int, hop_length: int, n_mels: int=80, fmin: int=0, fmax: int=None, window="hann", center=True, pad_mode="reflect", normalize=True): # read & write self.sample_rate = sample_rate self.normalize = normalize # stft self.n_fft = n_fft self.win_length = win_length self.hop_length = hop_length self.window = window self.center = center self.pad_mode = pad_mode # mel self.n_mels = n_mels self.fmin = fmin self.fmax = fmax self.mel_filter = self._create_mel_filter() self.inv_mel_filter = np.linalg.pinv(self.mel_filter) def _create_mel_filter(self): mel_filter = librosa.filters.mel(self.sample_rate, self.n_fft, n_mels=self.n_mels, fmin=self.fmin, fmax=self.fmax) return mel_filter def read_wav(self, filename): # resampling may occur wav, _ = librosa.load(filename, sr=self.sample_rate) # normalize the volume if self.normalize: wav = wav / np.max(np.abs(wav)) * 0.999 return wav def write_wav(self, path, wav): sf.write(path, wav, samplerate=self.sample_rate) def stft(self, wav): D = librosa.core.stft( wav, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window, center=self.center, pad_mode=self.pad_mode) return D def istft(self, D): wav = librosa.core.istft( D, hop_length=self.hop_length, win_length=self.win_length, window=self.window, center=self.center) return wav def spectrogram(self, wav): D = self.stft(wav) return np.abs(D) def mel_spectrogram(self, wav): S = self.spectrogram(wav) mel = np.dot(self.mel_filter, S) return mel