# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import numpy as np import paddle from paddle import distributed as dist from parakeet.utils import mp_tools def _load_latest_checkpoint(checkpoint_dir): """Get the iteration number corresponding to the latest saved checkpoint Args: checkpoint_dir (str): the directory where checkpoint is saved. Returns: int: the latest iteration number. """ checkpoint_record = os.path.join(checkpoint_dir, "checkpoint") # Create checkpoint index file if not exist. if (not os.path.isfile(checkpoint_record)): return 0 # Fetch the latest checkpoint index. with open(checkpoint_record, "r") as handle: latest_checkpoint = handle.readline().split()[-1] iteration = int(latest_checkpoint.split("-")[-1]) return iteration def _save_checkpoint(checkpoint_dir, iteration): """Save the iteration number of the latest model to be checkpointed. Args: checkpoint_dir (str): the directory where checkpoint is saved. iteration (int): the latest iteration number. Returns: None """ checkpoint_record = os.path.join(checkpoint_dir, "checkpoint") # Update the latest checkpoint index. with open(checkpoint_record, "w") as handle: handle.write("model_checkpoint_path: step-{}".format(iteration)) def load_parameters(model, optimizer=None, checkpoint_dir=None, checkpoint_path=None): """Load a specific model checkpoint from disk. Args: model (obj): model to load parameters. optimizer (obj, optional): optimizer to load states if needed. Defaults to None. checkpoint_dir (str, optional): the directory where checkpoint is saved. checkpoint_path (str, optional): if specified, load the checkpoint stored in the checkpoint_path and the argument 'checkpoint_dir' will be ignored. Defaults to None. Returns: iteration (int): number of iterations that the loaded checkpoint has been trained. """ if checkpoint_path is not None: iteration = int(os.path.basename(checkpoint_path).split("-")[-1]) elif checkpoint_dir is not None: iteration = _load_latest_checkpoint(checkpoint_dir) if iteration == 0: return iteration checkpoint_path = os.path.join(checkpoint_dir, "step-{}".format(iteration)) else: raise ValueError( "At least one of 'checkpoint_dir' and 'checkpoint_path' should be specified!" ) local_rank = dist.get_rank() params_path = checkpoint_path + ".pdparams" model_dict = paddle.load(params_path) model.set_state_dict(model_dict) print("[checkpoint] Rank {}: loaded model from {}".format( local_rank, params_path)) optimizer_path = checkpoint_path + ".pdopt" if optimizer and os.path.isfile(optimizer_path): optimizer_dict = paddle.load(optimizer_path) optimizer.set_state_dict(optimizer_dict) print("[checkpoint] Rank {}: loaded optimizer state from {}". format(local_rank, optimizer_path)) return iteration @mp_tools.rank_zero_only def save_parameters(checkpoint_dir, iteration, model, optimizer=None): """Checkpoint the latest trained model parameters. Args: checkpoint_dir (str): the directory where checkpoint is saved. iteration (int): the latest iteration number. model (obj): model to be checkpointed. optimizer (obj, optional): optimizer to be checkpointed. Defaults to None. Returns: None """ checkpoint_path = os.path.join(checkpoint_dir, "step-{}".format(iteration)) model_dict = model.state_dict() params_path = checkpoint_path + ".pdparams" paddle.save(model_dict, params_path) print("[checkpoint] Saved model to {}".format(params_path)) if optimizer: opt_dict = optimizer.state_dict() optimizer_path = checkpoint_path + ".pdopt" paddle.save(opt_dict, optimizer_path) print("[checkpoint] Saved optimzier state to {}".format( optimizer_path)) _save_checkpoint(checkpoint_dir, iteration)