# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from paddle import nn def summary(layer: nn.Layer): num_params = num_elements = 0 print("layer summary:") for name, param in layer.state_dict().items(): print("{}|{}|{}".format(name, param.shape, np.prod(param.shape))) num_elements += np.prod(param.shape) num_params += 1 print("layer has {} parameters, {} elements.".format(num_params, num_elements)) def gradient_norm(layer: nn.Layer): grad_norm_dict = {} for name, param in layer.state_dict().items(): if param.trainable: grad = param.gradient() grad_norm_dict[name] = np.linalg.norm(grad) / grad.size return grad_norm_dict def freeze(layer: nn.Layer): for param in layer.parameters(): param.trainable = False def unfreeze(layer: nn.Layer): for param in layer.parameters(): param.trainable = True