import numpy as np from matplotlib import cm import librosa import os import time import tqdm import paddle from paddle import fluid from paddle.fluid import layers as F from paddle.fluid import initializer as I from paddle.fluid import dygraph as dg from paddle.fluid.io import DataLoader from visualdl import LogWriter from parakeet.models.deepvoice3 import Encoder, Decoder, PostNet, SpectraNet from parakeet.data import SliceDataset, DataCargo, SequentialSampler, RandomSampler from parakeet.utils.io import save_parameters, load_parameters from parakeet.g2p import en from data import LJSpeech, DataCollector from vocoder import WaveflowVocoder, GriffinLimVocoder from clip import DoubleClip def create_model(config): char_embedding = dg.Embedding((en.n_vocab, config["char_dim"]), param_attr=I.Normal(scale=0.1)) multi_speaker = config["n_speakers"] > 1 speaker_embedding = dg.Embedding((config["n_speakers"], config["speaker_dim"]), param_attr=I.Normal(scale=0.1)) \ if multi_speaker else None encoder = Encoder(config["encoder_layers"], config["char_dim"], config["encoder_dim"], config["kernel_size"], has_bias=multi_speaker, bias_dim=config["speaker_dim"], keep_prob=1.0 - config["dropout"]) decoder = Decoder(config["n_mels"], config["reduction_factor"], list(config["prenet_sizes"]) + [config["char_dim"]], config["decoder_layers"], config["kernel_size"], config["attention_dim"], position_encoding_weight=config["position_weight"], omega=config["position_rate"], has_bias=multi_speaker, bias_dim=config["speaker_dim"], keep_prob=1.0 - config["dropout"]) postnet = PostNet(config["postnet_layers"], config["char_dim"], config["postnet_dim"], config["kernel_size"], config["n_mels"], config["reduction_factor"], has_bias=multi_speaker, bias_dim=config["speaker_dim"], keep_prob=1.0 - config["dropout"]) spectranet = SpectraNet(char_embedding, speaker_embedding, encoder, decoder, postnet) return spectranet def create_data(config, data_path): dataset = LJSpeech(data_path) train_dataset = SliceDataset(dataset, config["valid_size"], len(dataset)) train_collator = DataCollector(config["p_pronunciation"]) train_sampler = RandomSampler(train_dataset) train_cargo = DataCargo(train_dataset, train_collator, batch_size=config["batch_size"], sampler=train_sampler) train_loader = DataLoader\ .from_generator(capacity=10, return_list=True)\ .set_batch_generator(train_cargo) valid_dataset = SliceDataset(dataset, 0, config["valid_size"]) valid_collector = DataCollector(1.) valid_sampler = SequentialSampler(valid_dataset) valid_cargo = DataCargo(valid_dataset, valid_collector, batch_size=1, sampler=valid_sampler) valid_loader = DataLoader\ .from_generator(capacity=2, return_list=True)\ .set_batch_generator(valid_cargo) return train_loader, valid_loader def create_optimizer(model, config): optim = fluid.optimizer.Adam(config["learning_rate"], parameter_list=model.parameters(), grad_clip=DoubleClip(config["clip_value"], config["clip_norm"])) return optim def train(args, config): model = create_model(config) train_loader, valid_loader = create_data(config, args.input) optim = create_optimizer(model, config) global global_step max_iteration = config["max_iteration"] iterator = iter(tqdm.tqdm(train_loader)) while global_step <= max_iteration: # get inputs try: batch = next(iterator) except StopIteration: iterator = iter(tqdm.tqdm(train_loader)) batch = next(iterator) # unzip it text_seqs, text_lengths, specs, mels, num_frames = batch # forward & backward model.train() outputs = model(text_seqs, text_lengths, speakers=None, mel=mels) decoded, refined, attentions, final_state = outputs causal_mel_loss = model.spec_loss(decoded, mels, num_frames) non_causal_mel_loss = model.spec_loss(refined, mels, num_frames) loss = causal_mel_loss + non_causal_mel_loss loss.backward() # update optim.minimize(loss) # logging tqdm.tqdm.write("[train] step: {}\tloss: {:.6f}\tcausal:{:.6f}\tnon_causal:{:.6f}".format( global_step, loss.numpy()[0], causal_mel_loss.numpy()[0], non_causal_mel_loss.numpy()[0])) writer.add_scalar("loss/causal_mel_loss", causal_mel_loss.numpy()[0], step=global_step) writer.add_scalar("loss/non_causal_mel_loss", non_causal_mel_loss.numpy()[0], step=global_step) writer.add_scalar("loss/loss", loss.numpy()[0], step=global_step) if global_step % config["report_interval"] == 0: text_length = int(text_lengths.numpy()[0]) num_frame = int(num_frames.numpy()[0]) tag = "train_mel/ground-truth" img = cm.viridis(normalize(mels.numpy()[0, :num_frame].T)) writer.add_image(tag, img, step=global_step) tag = "train_mel/decoded" img = cm.viridis(normalize(decoded.numpy()[0, :num_frame].T)) writer.add_image(tag, img, step=global_step) tag = "train_mel/refined" img = cm.viridis(normalize(refined.numpy()[0, :num_frame].T)) writer.add_image(tag, img, step=global_step) vocoder = WaveflowVocoder() vocoder.model.eval() tag = "train_audio/ground-truth-waveflow" wav = vocoder(F.transpose(mels[0:1, :num_frame, :], (0, 2, 1))) writer.add_audio(tag, wav.numpy()[0], step=global_step, sample_rate=22050) tag = "train_audio/decoded-waveflow" wav = vocoder(F.transpose(decoded[0:1, :num_frame, :], (0, 2, 1))) writer.add_audio(tag, wav.numpy()[0], step=global_step, sample_rate=22050) tag = "train_audio/refined-waveflow" wav = vocoder(F.transpose(refined[0:1, :num_frame, :], (0, 2, 1))) writer.add_audio(tag, wav.numpy()[0], step=global_step, sample_rate=22050) attentions_np = attentions.numpy() attentions_np = attentions_np[:, 0, :num_frame // 4 , :text_length] for i, attention_layer in enumerate(np.rot90(attentions_np, axes=(1,2))): tag = "train_attention/layer_{}".format(i) img = cm.viridis(normalize(attention_layer)) writer.add_image(tag, img, step=global_step, dataformats="HWC") if global_step % config["save_interval"] == 0: save_parameters(writer.logdir, global_step, model, optim) # global step +1 global_step += 1 def normalize(arr): return (arr - arr.min()) / (arr.max() - arr.min()) if __name__ == "__main__": import argparse from ruamel import yaml parser = argparse.ArgumentParser(description="train a Deep Voice 3 model with LJSpeech") parser.add_argument("--config", type=str, required=True, help="config file") parser.add_argument("--input", type=str, required=True, help="data path of the original data") args = parser.parse_args() with open(args.config, 'rt') as f: config = yaml.safe_load(f) dg.enable_dygraph(fluid.CUDAPlace(0)) global global_step global_step = 1 global writer writer = LogWriter() print("[Training] tensorboard log and checkpoints are save in {}".format( writer.logdir)) train(args, config)