data: batch_size: 16 train_clip_seconds: 0.5 sample_rate: 22050 hop_length: 256 win_length: 1024 n_fft: 2048 n_mels: 80 valid_size: 16 model: upsampling_factors: [16, 16] n_loop: 10 n_layer: 3 filter_size: 2 residual_channels: 128 loss_type: "mog" output_dim: 30 log_scale_min: -9 train: learning_rate: 0.001 anneal_rate: 0.5 anneal_interval: 200000 gradient_max_norm: 100.0 checkpoint_interval: 10000 snap_interval: 10000 eval_interval: 10000 max_iterations: 2000000