import numpy as np import unittest import paddle paddle.set_default_dtype("float64") paddle.disable_static(paddle.CPUPlace()) from parakeet.models import waveflow class TestFold(unittest.TestCase): def test_audio(self): x = paddle.randn([4, 32 * 8]) y = waveflow.fold(x, 8) self.assertTupleEqual(y.numpy().shape, (4, 32, 8)) def test_spec(self): x = paddle.randn([4, 80, 32 * 8]) y = waveflow.fold(x, 8) self.assertTupleEqual(y.numpy().shape, (4, 80, 32, 8)) class TestUpsampleNet(unittest.TestCase): def test_io(self): net = waveflow.UpsampleNet([2, 2]) x = paddle.randn([4, 8, 6]) y = net(x) self.assertTupleEqual(y.numpy().shape, (4, 8, 2 * 2 * 6)) class TestResidualBlock(unittest.TestCase): def test_io(self): net = waveflow.ResidualBlock(4, 6, (3, 3), (2, 2)) x = paddle.randn([4, 4, 16, 32]) condition = paddle.randn([4, 6, 16, 32]) res, skip = net(x, condition) self.assertTupleEqual(res.numpy().shape, (4, 4, 16, 32)) self.assertTupleEqual(skip.numpy().shape, (4, 4, 16, 32)) def test_add_input(self): net = waveflow.ResidualBlock(4, 6, (3, 3), (2, 2)) net.eval() net.start_sequence() x_row = paddle.randn([4, 4, 1, 32]) condition_row = paddle.randn([4, 6, 1, 32]) res, skip = net.add_input(x_row, condition_row) self.assertTupleEqual(res.numpy().shape, (4, 4, 1, 32)) self.assertTupleEqual(skip.numpy().shape, (4, 4, 1, 32)) class TestResidualNet(unittest.TestCase): def test_io(self): net = waveflow.ResidualNet(8, 6, 8, (3, 3), [1, 1, 1, 1, 1, 1, 1, 1]) x = paddle.randn([4, 6, 8, 32]) condition = paddle.randn([4, 8, 8, 32]) y = net(x, condition) self.assertTupleEqual(y.numpy().shape, (4, 6, 8, 32)) def test_add_input(self): net = waveflow.ResidualNet(8, 6, 8, (3, 3), [1, 1, 1, 1, 1, 1, 1, 1]) net.eval() net.start_sequence() x_row = paddle.randn([4, 6, 1, 32]) condition_row = paddle.randn([4, 8, 1, 32]) y_row = net.add_input(x_row, condition_row) self.assertTupleEqual(y_row.numpy().shape, (4, 6, 1, 32)) class TestFlow(unittest.TestCase): def test_io(self): net = waveflow.Flow(8, 16, 7, (3, 3), 8) x = paddle.randn([4, 1, 8, 32]) condition = paddle.randn([4, 7, 8, 32]) z, (logs, b) = net(x, condition) self.assertTupleEqual(z.numpy().shape, (4, 1, 8, 32)) self.assertTupleEqual(logs.numpy().shape, (4, 1, 7, 32)) self.assertTupleEqual(b.numpy().shape, (4, 1, 7, 32)) def test_inverse_row(self): net = waveflow.Flow(8, 16, 7, (3, 3), 8) net.eval() net.start_sequence() x_row = paddle.randn([4, 1, 1, 32]) # last row condition_row = paddle.randn([4, 7, 1, 32]) z_row = paddle.randn([4, 1, 1, 32]) x_next_row, (logs, b) = net._inverse_row(z_row, x_row, condition_row) self.assertTupleEqual(x_next_row.numpy().shape, (4, 1, 1, 32)) self.assertTupleEqual(logs.numpy().shape, (4, 1, 1, 32)) self.assertTupleEqual(b.numpy().shape, (4, 1, 1, 32)) def test_inverse(self): net = waveflow.Flow(8, 16, 7, (3, 3), 8) net.eval() net.start_sequence() z = paddle.randn([4, 1, 8, 32]) condition = paddle.randn([4, 7, 8, 32]) with paddle.no_grad(): x, (logs, b) = net.inverse(z, condition) self.assertTupleEqual(x.numpy().shape, (4, 1, 8, 32)) self.assertTupleEqual(logs.numpy().shape, (4, 1, 7, 32)) self.assertTupleEqual(b.numpy().shape, (4, 1, 7, 32)) class TestWaveFlow(unittest.TestCase): def test_io(self): x = paddle.randn([4, 32 * 8 ]) condition = paddle.randn([4, 7, 32 * 8]) net = waveflow.WaveFlow(2, 8, 8, 16, 7, (3, 3)) z, logs_det_jacobian = net(x, condition) self.assertTupleEqual(z.numpy().shape, (4, 32 * 8)) self.assertTupleEqual(logs_det_jacobian.numpy().shape, (1,)) def test_inverse(self): z = paddle.randn([4, 32 * 8 ]) condition = paddle.randn([4, 7, 32 * 8]) net = waveflow.WaveFlow(2, 8, 8, 16, 7, (3, 3)) net.eval() with paddle.no_grad(): x = net.inverse(z, condition) self.assertTupleEqual(x.numpy().shape, (4, 32 * 8))