Parakeet/utils/fastspeech2_preprocess.py

442 lines
14 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from concurrent.futures import ThreadPoolExecutor
from operator import itemgetter
from pathlib import Path
from typing import List, Dict, Any
import jsonlines
import librosa
import numpy as np
import tqdm
import yaml
from parakeet.data.get_feats import LogMelFBank, Energy, Pitch
from yacs.config import CfgNode as Configuration
# speaker|utt_id|phn dur phn dur ...
def get_phn_dur(file_name):
'''
read MFA duration.txt
Parameters
----------
file_name : str or Path
path of gen_duration_from_textgrid.py's result
Returns
----------
Dict
sentence: {'utt': ([char], [int])}
'''
f = open(file_name, 'r')
sentence = {}
speaker_set = set()
for line in f:
line_list = line.strip().split('|')
utt = line_list[0]
speaker = line_list[1]
p_d = line_list[-1]
speaker_set.add(speaker)
phn_dur = p_d.split()
phn = phn_dur[::2]
dur = phn_dur[1::2]
assert len(phn) == len(dur)
sentence[utt] = (phn, [int(i) for i in dur], speaker)
f.close()
return sentence, speaker_set
def deal_silence(sentence):
'''
merge silences, set <eos>
Parameters
----------
sentence : Dict
sentence: {'utt': (([char], [int]), str)}
'''
for utt in sentence:
cur_phn, cur_dur, speaker = sentence[utt]
new_phn = []
new_dur = []
# merge sp and sil
for i, p in enumerate(cur_phn):
if i > 0 and 'sil' == p and cur_phn[i - 1] in {"sil", "sp"}:
new_dur[-1] += cur_dur[i]
new_phn[-1] = 'sil'
else:
new_phn.append(p)
new_dur.append(cur_dur[i])
for i, (p, d) in enumerate(zip(new_phn, new_dur)):
if p in {"sp"}:
if d < 14:
new_phn[i] = 'sp'
else:
new_phn[i] = 'spl'
assert len(new_phn) == len(new_dur)
sentence[utt] = [new_phn, new_dur, speaker]
def get_input_token(sentence, output_path):
'''
get phone set from training data and save it
Parameters
----------
sentence : Dict
sentence: {'utt': ([char], [int])}
output_path : str or path
path to save phone_id_map
'''
phn_token = set()
for utt in sentence:
for phn in sentence[utt][0]:
if phn != "<eos>":
phn_token.add(phn)
phn_token = list(phn_token)
phn_token.sort()
phn_token = ["<pad>", "<unk>"] + phn_token
phn_token += ["", "", "", "", "<eos>"]
with open(output_path, 'w') as f:
for i, phn in enumerate(phn_token):
f.write(phn + ' ' + str(i) + '\n')
def get_spk_id_map(speaker_set, output_path):
speakers = sorted(list(speaker_set))
with open(output_path, 'w') as f:
for i, spk in enumerate(speakers):
f.write(spk + ' ' + str(i) + '\n')
def compare_duration_and_mel_length(sentences, utt, mel):
'''
check duration error, correct sentences[utt] if possible, else pop sentences[utt]
Parameters
----------
sentences : Dict
sentences[utt] = [phones_list ,durations_list]
utt : str
utt_id
mel : np.ndarry
features (num_frames, n_mels)
'''
if utt in sentences:
len_diff = mel.shape[0] - sum(sentences[utt][1])
if len_diff != 0:
if len_diff > 0:
sentences[utt][1][-1] += len_diff
elif sentences[utt][1][-1] + len_diff > 0:
sentences[utt][1][-1] += len_diff
elif sentences[utt][1][0] + len_diff > 0:
sentences[utt][1][0] += len_diff
else:
print("the len_diff is unable to correct:", len_diff)
sentences.pop(utt)
def process_sentence(config: Dict[str, Any],
fp: Path,
sentences: Dict,
output_dir: Path,
mel_extractor=None,
pitch_extractor=None,
energy_extractor=None,
cut_sil: bool=True):
utt_id = fp.stem
record = None
if utt_id in sentences:
# reading, resampling may occur
wav, _ = librosa.load(str(fp), sr=config.fs)
if len(wav.shape) != 1 or np.abs(wav).max() > 1.0:
return record
assert len(wav.shape) == 1, f"{utt_id} is not a mono-channel audio."
assert np.abs(wav).max(
) <= 1.0, f"{utt_id} is seems to be different that 16 bit PCM."
phones = sentences[utt_id][0]
durations = sentences[utt_id][1]
speaker = sentences[utt_id][2]
d_cumsum = np.pad(np.array(durations).cumsum(0), (1, 0), 'constant')
# little imprecise than use *.TextGrid directly
times = librosa.frames_to_time(
d_cumsum, sr=config.fs, hop_length=config.n_shift)
if cut_sil:
start = 0
end = d_cumsum[-1]
if phones[0] == "sil" and len(durations) > 1:
start = times[1]
durations = durations[1:]
phones = phones[1:]
if phones[-1] == 'sil' and len(durations) > 1:
end = times[-2]
durations = durations[:-1]
phones = phones[:-1]
sentences[utt_id][0] = phones
sentences[utt_id][1] = durations
start, end = librosa.time_to_samples([start, end], sr=config.fs)
wav = wav[start:end]
# extract mel feats
logmel = mel_extractor.get_log_mel_fbank(wav)
# change duration according to mel_length
compare_duration_and_mel_length(sentences, utt_id, logmel)
phones = sentences[utt_id][0]
durations = sentences[utt_id][1]
num_frames = logmel.shape[0]
assert sum(durations) == num_frames
mel_dir = output_dir / "data_speech"
mel_dir.mkdir(parents=True, exist_ok=True)
mel_path = mel_dir / (utt_id + "_speech.npy")
np.save(mel_path, logmel)
# extract pitch and energy
f0 = pitch_extractor.get_pitch(wav, duration=np.array(durations))
assert f0.shape[0] == len(durations)
f0_dir = output_dir / "data_pitch"
f0_dir.mkdir(parents=True, exist_ok=True)
f0_path = f0_dir / (utt_id + "_pitch.npy")
np.save(f0_path, f0)
energy = energy_extractor.get_energy(wav, duration=np.array(durations))
assert energy.shape[0] == len(durations)
energy_dir = output_dir / "data_energy"
energy_dir.mkdir(parents=True, exist_ok=True)
energy_path = energy_dir / (utt_id + "_energy.npy")
np.save(energy_path, energy)
record = {
"utt_id": utt_id,
"phones": phones,
"text_lengths": len(phones),
"speech_lengths": num_frames,
"durations": durations,
# use absolute path
"speech": str(mel_path.resolve()),
"pitch": str(f0_path.resolve()),
"energy": str(energy_path.resolve()),
"speaker": speaker
}
return record
def process_sentences(config,
fps: List[Path],
sentences: Dict,
output_dir: Path,
mel_extractor=None,
pitch_extractor=None,
energy_extractor=None,
nprocs: int=1,
cut_sil: bool=True):
if nprocs == 1:
results = []
for fp in tqdm.tqdm(fps, total=len(fps)):
record = process_sentence(config, fp, sentences, output_dir,
mel_extractor, pitch_extractor,
energy_extractor, cut_sil)
if record:
results.append(record)
else:
with ThreadPoolExecutor(nprocs) as pool:
futures = []
with tqdm.tqdm(total=len(fps)) as progress:
for fp in fps:
future = pool.submit(process_sentence, config, fp,
sentences, output_dir, mel_extractor,
pitch_extractor, energy_extractor,
cut_sil)
future.add_done_callback(lambda p: progress.update())
futures.append(future)
results = []
for ft in futures:
record = ft.result()
if record:
results.append(record)
results.sort(key=itemgetter("utt_id"))
with jsonlines.open(output_dir / "metadata.jsonl", 'w') as writer:
for item in results:
writer.write(item)
print("Done")
def main():
# parse config and args
parser = argparse.ArgumentParser(
description="Preprocess audio and then extract features.")
parser.add_argument(
"--dataset",
default="baker",
type=str,
help="name of dataset, should in {baker, aishell3} now")
parser.add_argument(
"--rootdir", default=None, type=str, help="directory to dataset.")
parser.add_argument(
"--dur-file",
default=None,
type=str,
help="path to baker durations.txt.")
parser.add_argument(
"--dumpdir",
type=str,
required=True,
help="directory to dump feature files.")
parser.add_argument(
"--config-path",
default="conf/default.yaml",
type=str,
help="yaml format configuration file.")
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)")
parser.add_argument(
"--num-cpu", type=int, default=1, help="number of process.")
def str2bool(str):
return True if str.lower() == 'true' else False
parser.add_argument(
"--cut-sil",
type=str2bool,
default=True,
help="whether cut sil in the edge of audio")
args = parser.parse_args()
config_path = Path(args.config_path).resolve()
root_dir = Path(args.rootdir).expanduser()
dumpdir = Path(args.dumpdir).expanduser()
dumpdir.mkdir(parents=True, exist_ok=True)
dur_file = Path(args.dur_file).expanduser()
assert root_dir.is_dir()
assert dur_file.is_file()
with open(config_path, 'rt') as f:
_C = yaml.safe_load(f)
_C = Configuration(_C)
config = _C.clone()
if args.verbose > 1:
print(vars(args))
print(config)
sentences, speaker_set = get_phn_dur(dur_file)
deal_silence(sentences)
phone_id_map_path = dumpdir / "phone_id_map.txt"
speaker_id_map_path = dumpdir / "speaker_id_map.txt"
get_input_token(sentences, phone_id_map_path)
get_spk_id_map(speaker_set, speaker_id_map_path)
if args.dataset == "baker":
wav_files = sorted(list((root_dir / "Wave").rglob("*.wav")))
# split data into 3 sections
num_train = 9800
num_dev = 100
train_wav_files = wav_files[:num_train]
dev_wav_files = wav_files[num_train:num_train + num_dev]
test_wav_files = wav_files[num_train + num_dev:]
elif args.dataset == "aishell3":
sub_num_dev = 5
wav_dir = root_dir / "train" / "wav"
train_wav_files = []
dev_wav_files = []
test_wav_files = []
for speaker in os.listdir(wav_dir):
wav_files = sorted(list((wav_dir / speaker).rglob("*.wav")))
if len(wav_files) > 100:
train_wav_files += wav_files[:-sub_num_dev * 2]
dev_wav_files += wav_files[-sub_num_dev * 2:-sub_num_dev]
test_wav_files += wav_files[-sub_num_dev:]
else:
train_wav_files += wav_files
train_dump_dir = dumpdir / "train" / "raw"
train_dump_dir.mkdir(parents=True, exist_ok=True)
dev_dump_dir = dumpdir / "dev" / "raw"
dev_dump_dir.mkdir(parents=True, exist_ok=True)
test_dump_dir = dumpdir / "test" / "raw"
test_dump_dir.mkdir(parents=True, exist_ok=True)
# Extractor
mel_extractor = LogMelFBank(
sr=config.fs,
n_fft=config.n_fft,
hop_length=config.n_shift,
win_length=config.win_length,
window=config.window,
n_mels=config.n_mels,
fmin=config.fmin,
fmax=config.fmax)
pitch_extractor = Pitch(
sr=config.fs,
hop_length=config.n_shift,
f0min=config.f0min,
f0max=config.f0max)
energy_extractor = Energy(
sr=config.fs,
n_fft=config.n_fft,
hop_length=config.n_shift,
win_length=config.win_length,
window=config.window)
# process for the 3 sections
if train_wav_files:
process_sentences(
config,
train_wav_files,
sentences,
train_dump_dir,
mel_extractor,
pitch_extractor,
energy_extractor,
nprocs=args.num_cpu,
cut_sil=args.cut_sil)
if dev_wav_files:
process_sentences(
config,
dev_wav_files,
sentences,
dev_dump_dir,
mel_extractor,
pitch_extractor,
energy_extractor,
cut_sil=args.cut_sil)
if test_wav_files:
process_sentences(
config,
test_wav_files,
sentences,
test_dump_dir,
mel_extractor,
pitch_extractor,
energy_extractor,
nprocs=args.num_cpu,
cut_sil=args.cut_sil)
if __name__ == "__main__":
main()