Parakeet/parakeet/modules/conv.py

102 lines
3.7 KiB
Python

import paddle
from paddle import nn
class Conv1dCell(nn.Conv1D):
"""
A subclass of Conv1d layer, which can be used like an RNN cell. It can take
step input and return step output. It is done by keeping an internal buffer,
when adding a step input, we shift the buffer and return a step output. For
single step case, convolution devolves to a linear transformation.
That it can be used as a cell depends on several restrictions:
1. stride must be 1;
2. padding must be an asymmetric padding (recpetive_field - 1, 0).
As a result, these arguments are removed form the initializer.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
dilation=1,
weight_attr=None,
bias_attr=None):
_dilation = dilation[0] if isinstance(dilation, (tuple, list)) else dilation
_kernel_size = kernel_size[0] if isinstance(kernel_size, (tuple, list)) else kernel_size
self._r = 1 + (_kernel_size - 1) * _dilation
super(Conv1dCell, self).__init__(
in_channels,
out_channels,
kernel_size,
padding=(self._r - 1, 0),
dilation=dilation,
weight_attr=weight_attr,
bias_attr=bias_attr,
data_format="NCL")
@property
def receptive_field(self):
return self._r
def start_sequence(self):
if self.training:
raise Exception("only use start_sequence in evaluation")
self._buffer = None
self._reshaped_weight = paddle.reshape(
self.weight, (self._out_channels, -1))
def initialize_buffer(self, x_t):
batch_size, _ = x_t.shape
self._buffer = paddle.zeros(
(batch_size, self._in_channels, self.receptive_field),
dtype=x_t.dtype)
def update_buffer(self, x_t):
self._buffer = paddle.concat(
[self._buffer[:, :, 1:], paddle.unsqueeze(x_t, -1)], -1)
def add_input(self, x_t):
"""
Arguments:
x_t (Tensor): shape (batch_size, in_channels), step input.
Rerurns:
y_t (Tensor): shape (batch_size, out_channels), step output.
"""
batch_size = x_t.shape[0]
if self.receptive_field > 1:
if self._buffer is None:
self.initialize_buffer(x_t)
# update buffer
self.update_buffer(x_t)
if self._dilation[0] > 1:
input = self._buffer[:, :, ::self._dilation[0]]
else:
input = self._buffer
input = paddle.reshape(input, (batch_size, -1))
else:
input = x_t
y_t = paddle.matmul(input, self._reshaped_weight, transpose_y=True)
y_t = y_t + self.bias
return y_t
class Conv1dBatchNorm(nn.Layer):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0,
weight_attr=None, bias_attr=None, data_format="NCL"):
super(Conv1dBatchNorm, self).__init__()
# TODO(chenfeiyu): carefully initialize Conv1d's weight
self.conv = nn.Conv1D(in_channels, out_channels, kernel_size, stride,
padding=padding,
weight_attr=weight_attr,
bias_attr=bias_attr,
data_format=data_format)
# TODO: channel last, but BatchNorm1d does not support channel last layout
self.bn = nn.BatchNorm1D(out_channels, momentum=0.99, epsilon=1e-3, data_format=data_format)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x