241 lines
7.3 KiB
Python
241 lines
7.3 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle
|
|
import torch
|
|
from timer import timer
|
|
from parallel_wavegan.layers import upsample, residual_block
|
|
from parallel_wavegan.models import parallel_wavegan as pwgan
|
|
from parakeet.utils.layer_tools import summary
|
|
from parakeet.utils.profile import synchronize
|
|
|
|
from parakeet.models.parallel_wavegan import ConvInUpsampleNet, ResidualBlock
|
|
from parakeet.models.parallel_wavegan import PWGGenerator, PWGDiscriminator, ResidualPWGDiscriminator
|
|
|
|
paddle.set_device("gpu:0")
|
|
device = torch.device("cuda:0")
|
|
|
|
|
|
def test_convin_upsample_net():
|
|
net = ConvInUpsampleNet(
|
|
[4, 4, 4, 4],
|
|
"LeakyReLU", {"negative_slope": 0.2},
|
|
freq_axis_kernel_size=3,
|
|
aux_context_window=0)
|
|
net2 = upsample.ConvInUpsampleNetwork(
|
|
[4, 4, 4, 4],
|
|
nonlinear_activation="LeakyReLU",
|
|
nonlinear_activation_params={"negative_slope": 0.2},
|
|
freq_axis_kernel_size=3,
|
|
aux_context_window=0).to(device)
|
|
summary(net)
|
|
for k, v in net2.named_parameters():
|
|
print(k, v.shape)
|
|
net.state_dict()[k].set_value(v.data.cpu().numpy())
|
|
|
|
c = paddle.randn([4, 80, 180])
|
|
synchronize()
|
|
with timer(unit='s') as t:
|
|
out = net(c)
|
|
synchronize()
|
|
print(f"paddle conv_in_upsample_net forward takes {t.elapse}s.")
|
|
|
|
with timer(unit='s') as t:
|
|
out.sum().backward()
|
|
synchronize()
|
|
print(f"paddle conv_in_upsample_net backward takes {t.elapse}s.")
|
|
|
|
c_torch = torch.as_tensor(c.numpy()).to(device)
|
|
torch.cuda.synchronize()
|
|
with timer(unit='s') as t:
|
|
out2 = net2(c_torch)
|
|
print(f"torch conv_in_upsample_net forward takes {t.elapse}s.")
|
|
|
|
with timer(unit='s') as t:
|
|
out2.sum().backward()
|
|
print(f"torch conv_in_upsample_net backward takes {t.elapse}s.")
|
|
|
|
print("forward check")
|
|
print(out.numpy()[0])
|
|
print(out2.data.cpu().numpy()[0])
|
|
|
|
print("backward check")
|
|
print(net.conv_in.weight.grad.numpy()[0])
|
|
print(net2.conv_in.weight.grad.data.cpu().numpy()[0])
|
|
|
|
|
|
def test_residual_block():
|
|
net = ResidualBlock(dilation=9)
|
|
net2 = residual_block.ResidualBlock(dilation=9)
|
|
summary(net)
|
|
summary(net2)
|
|
for k, v in net2.named_parameters():
|
|
net.state_dict()[k].set_value(v.data.cpu().numpy())
|
|
|
|
x = paddle.randn([4, 64, 180])
|
|
c = paddle.randn([4, 80, 180])
|
|
res, skip = net(x, c)
|
|
res2, skip2 = net2(torch.as_tensor(x.numpy()), torch.as_tensor(c.numpy()))
|
|
|
|
print("forward:")
|
|
print(res.numpy()[0])
|
|
print(res2.data.cpu().numpy()[0])
|
|
print(skip.numpy()[0])
|
|
print(skip2.data.cpu().numpy()[0])
|
|
|
|
(res.sum() + skip.sum()).backward()
|
|
(res2.sum() + skip2.sum()).backward()
|
|
|
|
print("backward:")
|
|
print(net.conv.weight.grad.numpy().squeeze()[0])
|
|
print(net2.conv.weight.grad.data.cpu().numpy().squeeze()[0])
|
|
|
|
|
|
def test_pwg_generator():
|
|
net = PWGGenerator(
|
|
layers=9,
|
|
stacks=3,
|
|
upsample_scales=[4, 4, 4, 4],
|
|
nonlinear_activation="LeakyReLU",
|
|
nonlinear_activation_params={"negative_slope": 0.5},
|
|
use_weight_norm=True)
|
|
net2 = pwgan.ParallelWaveGANGenerator(
|
|
layers=9,
|
|
stacks=3,
|
|
upsample_params={
|
|
"upsample_scales": [4, 4, 4, 4],
|
|
"nonlinear_activation": "LeakyReLU",
|
|
"nonlinear_activation_params": {
|
|
"negative_slope": 0.5
|
|
}
|
|
},
|
|
use_weight_norm=True).to(device)
|
|
summary(net)
|
|
summary(net2)
|
|
for k, v in net2.named_parameters():
|
|
p = net.state_dict()[k]
|
|
if k.endswith("_g"):
|
|
p.set_value(v.data.cpu().numpy().reshape([-1]))
|
|
else:
|
|
p.set_value(v.data.cpu().numpy())
|
|
x = paddle.randn([4, 1, 80 * 256])
|
|
c = paddle.randn([4, 80, 80 + 4])
|
|
|
|
synchronize()
|
|
with timer(unit='s') as t:
|
|
out = net(x, c)
|
|
synchronize()
|
|
print(f"paddle generator forward takes {t.elapse}s.")
|
|
|
|
synchronize()
|
|
with timer(unit='s') as t:
|
|
out.sum().backward()
|
|
synchronize()
|
|
print(f"paddle generator backward takes {t.elapse}s.")
|
|
|
|
x_torch = torch.as_tensor(x.numpy()).to(device)
|
|
c_torch = torch.as_tensor(c.numpy()).to(device)
|
|
|
|
torch.cuda.synchronize()
|
|
with timer(unit='s') as t:
|
|
out2 = net2(x_torch, c_torch)
|
|
torch.cuda.synchronize()
|
|
print(f"torch generator forward takes {t.elapse}s.")
|
|
|
|
torch.cuda.synchronize()
|
|
with timer(unit='s') as t:
|
|
out2.sum().backward()
|
|
torch.cuda.synchronize()
|
|
print(f"torch generator backward takes {t.elapse}s.")
|
|
|
|
print("test forward:")
|
|
print(out.numpy()[0])
|
|
print(out2.data.cpu().numpy()[0])
|
|
|
|
print("test backward:")
|
|
print("wv")
|
|
print(net.first_conv.weight_v.grad.numpy().squeeze())
|
|
print(net2.first_conv.weight_v.grad.data.cpu().numpy().squeeze())
|
|
|
|
print("wg")
|
|
print(net.first_conv.weight_g.grad.numpy().squeeze())
|
|
print(net2.first_conv.weight_g.grad.data.cpu().numpy().squeeze())
|
|
# print(out.shape)
|
|
|
|
|
|
def test_pwg_discriminator():
|
|
net = PWGDiscriminator()
|
|
net2 = pwgan.ParallelWaveGANDiscriminator().to(device)
|
|
summary(net)
|
|
summary(net2)
|
|
for k, v in net2.named_parameters():
|
|
p = net.state_dict()[k]
|
|
if k.endswith("_g"):
|
|
p.set_value(v.data.cpu().numpy().reshape([-1]))
|
|
else:
|
|
p.set_value(v.data.cpu().numpy())
|
|
x = paddle.randn([4, 1, 180 * 256])
|
|
|
|
synchronize()
|
|
with timer() as t:
|
|
y = net(x)
|
|
synchronize()
|
|
print(f"forward takes {t.elapse}s.")
|
|
|
|
synchronize()
|
|
with timer() as t:
|
|
y.sum().backward()
|
|
synchronize()
|
|
print(f"backward takes {t.elapse}s.")
|
|
|
|
x_torch = torch.as_tensor(x.numpy()).to(device)
|
|
torch.cuda.synchronize()
|
|
with timer() as t:
|
|
y2 = net2(x_torch)
|
|
torch.cuda.synchronize()
|
|
print(f"forward takes {t.elapse}s.")
|
|
|
|
torch.cuda.synchronize()
|
|
with timer() as t:
|
|
y2.sum().backward()
|
|
torch.cuda.synchronize()
|
|
print(f"backward takes {t.elapse}s.")
|
|
|
|
print("test forward:")
|
|
print(y.numpy()[0])
|
|
print(y2.data.cpu().numpy()[0])
|
|
|
|
print("test backward:")
|
|
print(net.conv_layers[0].weight_v.grad.numpy().squeeze())
|
|
print(net2.conv_layers[0].weight_v.grad.data.cpu().numpy().squeeze())
|
|
|
|
|
|
def test_residual_pwg_discriminator():
|
|
net = ResidualPWGDiscriminator()
|
|
net2 = pwgan.ResidualParallelWaveGANDiscriminator()
|
|
summary(net)
|
|
summary(net2)
|
|
for k, v in net2.named_parameters():
|
|
p = net.state_dict()[k]
|
|
if k.endswith("_g"):
|
|
p.set_value(v.data.cpu().numpy().reshape([-1]))
|
|
else:
|
|
p.set_value(v.data.cpu().numpy())
|
|
x = paddle.randn([4, 1, 180 * 256])
|
|
y = net(x)
|
|
y2 = net2(torch.as_tensor(x.numpy()))
|
|
print(y.numpy()[0])
|
|
print(y2.data.cpu().numpy()[0])
|
|
print(y.shape)
|