177 lines
6.1 KiB
Python
177 lines
6.1 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import time
|
|
from pathlib import Path
|
|
import math
|
|
import numpy as np
|
|
import paddle
|
|
from paddle import distributed as dist
|
|
from paddle.io import DataLoader, DistributedBatchSampler
|
|
from tensorboardX import SummaryWriter
|
|
from collections import defaultdict
|
|
|
|
import parakeet
|
|
from parakeet.data import dataset
|
|
from parakeet.models.wavenet import UpsampleNet, WaveNet, ConditionalWaveNet
|
|
from parakeet.audio import AudioProcessor
|
|
from parakeet.utils import scheduler, mp_tools
|
|
from parakeet.training.cli import default_argument_parser
|
|
from parakeet.training.experiment import ExperimentBase
|
|
from parakeet.utils.mp_tools import rank_zero_only
|
|
|
|
from config import get_cfg_defaults
|
|
from ljspeech import LJSpeech, LJSpeechClipCollector, LJSpeechCollector
|
|
|
|
|
|
class Experiment(ExperimentBase):
|
|
def setup_model(self):
|
|
config = self.config
|
|
model = ConditionalWaveNet(
|
|
upsample_factors=config.model.upsample_factors,
|
|
n_stack=config.model.n_stack,
|
|
n_loop=config.model.n_loop,
|
|
residual_channels=config.model.residual_channels,
|
|
output_dim=config.model.output_dim,
|
|
n_mels=config.data.n_mels,
|
|
filter_size=config.model.filter_size,
|
|
loss_type=config.model.loss_type,
|
|
log_scale_min=config.model.log_scale_min)
|
|
|
|
if self.parallel > 1:
|
|
model = paddle.DataParallel(model)
|
|
|
|
lr_scheduler = paddle.optimizer.lr.StepDecay(
|
|
config.training.lr, config.training.anneal_interval,
|
|
config.training.anneal_rate)
|
|
optimizer = paddle.optimizer.Adam(
|
|
lr_scheduler,
|
|
parameters=model.parameters(),
|
|
grad_clip=paddle.nn.ClipGradByGlobalNorm(
|
|
config.training.gradient_max_norm))
|
|
|
|
self.model = model
|
|
self.model_core = model._layer if self.parallel else model
|
|
self.optimizer = optimizer
|
|
|
|
def setup_dataloader(self):
|
|
config = self.config
|
|
args = self.args
|
|
|
|
ljspeech_dataset = LJSpeech(args.data)
|
|
valid_set, train_set = dataset.split(ljspeech_dataset,
|
|
config.data.valid_size)
|
|
|
|
# convolutional net's causal padding size
|
|
context_size = config.model.n_stack \
|
|
* sum([(config.model.filter_size - 1) * 2**i for i in range(config.model.n_loop)]) \
|
|
+ 1
|
|
context_frames = context_size // config.data.hop_length
|
|
|
|
# frames used to compute loss
|
|
frames_per_second = config.data.sample_rate // config.data.hop_length
|
|
train_clip_frames = math.ceil(config.data.train_clip_seconds *
|
|
frames_per_second)
|
|
|
|
num_frames = train_clip_frames + context_frames
|
|
batch_fn = LJSpeechClipCollector(num_frames, config.data.hop_length)
|
|
if not self.parallel:
|
|
train_loader = DataLoader(
|
|
train_set,
|
|
batch_size=config.data.batch_size,
|
|
shuffle=True,
|
|
drop_last=True,
|
|
collate_fn=batch_fn)
|
|
else:
|
|
sampler = DistributedBatchSampler(
|
|
train_set,
|
|
batch_size=config.data.batch_size,
|
|
shuffle=True,
|
|
drop_last=True)
|
|
train_loader = DataLoader(
|
|
train_set, batch_sampler=sampler, collate_fn=batch_fn)
|
|
|
|
valid_batch_fn = LJSpeechCollector()
|
|
valid_loader = DataLoader(
|
|
valid_set, batch_size=1, collate_fn=valid_batch_fn)
|
|
|
|
self.train_loader = train_loader
|
|
self.valid_loader = valid_loader
|
|
|
|
def train_batch(self):
|
|
start = time.time()
|
|
batch = self.read_batch()
|
|
data_loader_time = time.time() - start
|
|
|
|
self.model.train()
|
|
self.optimizer.clear_grad()
|
|
mel, wav, audio_starts = batch
|
|
|
|
y = self.model(wav, mel, audio_starts)
|
|
loss = self.model.loss(y, wav)
|
|
loss.backward()
|
|
self.optimizer.step()
|
|
iteration_time = time.time() - start
|
|
|
|
loss_value = float(loss)
|
|
msg = "Rank: {}, ".format(dist.get_rank())
|
|
msg += "step: {}, ".format(self.iteration)
|
|
msg += "time: {:>.3f}s/{:>.3f}s, ".format(data_loader_time,
|
|
iteration_time)
|
|
msg += "loss: {:>.6f}".format(loss_value)
|
|
self.logger.info(msg)
|
|
self.visualizer.add_scalar(
|
|
"train/loss", loss_value, global_step=self.iteration)
|
|
|
|
@mp_tools.rank_zero_only
|
|
@paddle.no_grad()
|
|
def valid(self):
|
|
valid_iterator = iter(self.valid_loader)
|
|
valid_losses = []
|
|
mel, wav, audio_starts = next(valid_iterator)
|
|
y = self.model(wav, mel, audio_starts)
|
|
loss = self.model.loss(y, wav)
|
|
valid_losses.append(float(loss))
|
|
valid_loss = np.mean(valid_losses)
|
|
self.visualizer.add_scalar(
|
|
"valid/loss", valid_loss, global_step=self.iteration)
|
|
|
|
|
|
def main_sp(config, args):
|
|
exp = Experiment(config, args)
|
|
exp.setup()
|
|
exp.run()
|
|
|
|
|
|
def main(config, args):
|
|
if args.nprocs > 1 and args.device == "gpu":
|
|
dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
|
|
else:
|
|
main_sp(config, args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
config = get_cfg_defaults()
|
|
parser = default_argument_parser()
|
|
args = parser.parse_args()
|
|
if args.config:
|
|
config.merge_from_file(args.config)
|
|
if args.opts:
|
|
config.merge_from_list(args.opts)
|
|
config.freeze()
|
|
print(config)
|
|
print(args)
|
|
|
|
main(config, args)
|