Parakeet/examples/deepvoice3/clip.py

84 lines
3.2 KiB
Python

from __future__ import print_function
import copy
import six
import warnings
import functools
from paddle.fluid import layers
from paddle.fluid import framework
from paddle.fluid import core
from paddle.fluid import name_scope
from paddle.fluid.dygraph import base as imperative_base
from paddle.fluid.clip import GradientClipBase, _correct_clip_op_role_var
class DoubleClip(GradientClipBase):
def __init__(self, clip_value, clip_norm, group_name="default_group", need_clip=None):
super(DoubleClip, self).__init__(need_clip)
self.clip_value = float(clip_value)
self.clip_norm = float(clip_norm)
self.group_name = group_name
def __str__(self):
return "Gradient Clip By Value and GlobalNorm, value={}, global_norm={}".format(
self.clip_value, self.clip_norm)
@imperative_base.no_grad
def _dygraph_clip(self, params_grads):
params_grads = self._dygraph_clip_by_value(params_grads)
params_grads = self._dygraph_clip_by_global_norm(params_grads)
return params_grads
@imperative_base.no_grad
def _dygraph_clip_by_value(self, params_grads):
params_and_grads = []
for p, g in params_grads:
if g is None:
continue
if self._need_clip_func is not None and not self._need_clip_func(p):
params_and_grads.append((p, g))
continue
new_grad = layers.clip(x=g, min=-self.clip_value, max=self.clip_value)
params_and_grads.append((p, new_grad))
return params_and_grads
@imperative_base.no_grad
def _dygraph_clip_by_global_norm(self, params_grads):
params_and_grads = []
sum_square_list = []
for p, g in params_grads:
if g is None:
continue
if self._need_clip_func is not None and not self._need_clip_func(p):
continue
merge_grad = g
if g.type == core.VarDesc.VarType.SELECTED_ROWS:
merge_grad = layers.merge_selected_rows(g)
merge_grad = layers.get_tensor_from_selected_rows(merge_grad)
square = layers.square(merge_grad)
sum_square = layers.reduce_sum(square)
sum_square_list.append(sum_square)
# all parameters have been filterd out
if len(sum_square_list) == 0:
return params_grads
global_norm_var = layers.concat(sum_square_list)
global_norm_var = layers.reduce_sum(global_norm_var)
global_norm_var = layers.sqrt(global_norm_var)
max_global_norm = layers.fill_constant(
shape=[1], dtype='float32', value=self.clip_norm)
clip_var = layers.elementwise_div(
x=max_global_norm,
y=layers.elementwise_max(
x=global_norm_var, y=max_global_norm))
for p, g in params_grads:
if g is None:
continue
if self._need_clip_func is not None and not self._need_clip_func(p):
params_and_grads.append((p, g))
continue
new_grad = layers.elementwise_mul(x=g, y=clip_var)
params_and_grads.append((p, new_grad))
return params_and_grads