Parakeet/parakeet/models/waveflow/waveflow.py

197 lines
6.9 KiB
Python

import itertools
import os
import time
#import librosa
from scipy.io.wavfile import write
import numpy as np
import paddle.fluid.dygraph as dg
from paddle import fluid
import utils
from data import LJSpeech
from waveflow_modules import WaveFlowLoss, WaveFlowModule
class WaveFlow():
def __init__(self, config, checkpoint_dir, parallel=False, rank=0,
nranks=1, tb_logger=None):
self.config = config
self.checkpoint_dir = checkpoint_dir
self.parallel = parallel
self.rank = rank
self.nranks = nranks
self.tb_logger = tb_logger
def build(self, training=True):
config = self.config
dataset = LJSpeech(config, self.nranks, self.rank)
self.trainloader = dataset.trainloader
self.validloader = dataset.validloader
# if self.rank == 0:
# for i, (audios, mels) in enumerate(self.validloader()):
# print("audios {}, mels {}".format(audios.dtype, mels.dtype))
# print("{}: rank {}, audios {}, mels {}".format(
# i, self.rank, audios.shape, mels.shape))
#
# for i, (audios, mels) in enumerate(self.trainloader):
# print("{}: rank {}, audios {}, mels {}".format(
# i, self.rank, audios.shape, mels.shape))
#
# exit()
waveflow = WaveFlowModule("waveflow", config)
# Dry run once to create and initalize all necessary parameters.
audio = dg.to_variable(np.random.randn(1, 16000).astype(np.float32))
mel = dg.to_variable(
np.random.randn(1, config.mel_bands, 63).astype(np.float32))
waveflow(audio, mel)
if training:
optimizer = fluid.optimizer.AdamOptimizer(
learning_rate=config.learning_rate)
# Load parameters.
utils.load_parameters(self.checkpoint_dir, self.rank,
waveflow, optimizer,
iteration=config.iteration,
file_path=config.checkpoint)
print("Rank {}: checkpoint loaded.".format(self.rank))
# Data parallelism.
if self.parallel:
strategy = dg.parallel.prepare_context()
waveflow = dg.parallel.DataParallel(waveflow, strategy)
self.waveflow = waveflow
self.optimizer = optimizer
self.criterion = WaveFlowLoss(config.sigma)
else:
# Load parameters.
utils.load_parameters(self.checkpoint_dir, self.rank, waveflow,
iteration=config.iteration,
file_path=config.checkpoint)
print("Rank {}: checkpoint loaded.".format(self.rank))
self.waveflow = waveflow
def train_step(self, iteration):
self.waveflow.train()
start_time = time.time()
audios, mels = next(self.trainloader)
load_time = time.time()
outputs = self.waveflow(audios, mels)
loss = self.criterion(outputs)
if self.parallel:
# loss = loss / num_trainers
loss = self.waveflow.scale_loss(loss)
loss.backward()
self.waveflow.apply_collective_grads()
else:
loss.backward()
current_lr = self.optimizer._learning_rate
self.optimizer.minimize(loss, parameter_list=self.waveflow.parameters())
self.waveflow.clear_gradients()
graph_time = time.time()
if self.rank == 0:
loss_val = float(loss.numpy()) * self.nranks
log = "Rank: {} Step: {:^8d} Loss: {:<8.3f} " \
"Time: {:.3f}/{:.3f}".format(
self.rank, iteration, loss_val,
load_time - start_time, graph_time - load_time)
print(log)
tb = self.tb_logger
tb.add_scalar("Train-Loss-Rank-0", loss_val, iteration)
tb.add_scalar("Learning-Rate", current_lr, iteration)
@dg.no_grad
def valid_step(self, iteration):
self.waveflow.eval()
tb = self.tb_logger
total_loss = []
sample_audios = []
start_time = time.time()
for i, batch in enumerate(self.validloader()):
audios, mels = batch
valid_outputs = self.waveflow(audios, mels)
valid_z, valid_log_s_list = valid_outputs
# Visualize latent z and scale log_s.
if self.rank == 0 and i == 0:
tb.add_histogram("Valid-Latent_z", valid_z.numpy(), iteration)
for j, valid_log_s in enumerate(valid_log_s_list):
hist_name = "Valid-{}th-Flow-Log_s".format(j)
tb.add_histogram(hist_name, valid_log_s.numpy(), iteration)
valid_loss = self.criterion(valid_outputs)
total_loss.append(float(valid_loss.numpy()))
total_time = time.time() - start_time
if self.rank == 0:
loss_val = np.mean(total_loss)
log = "Test | Rank: {} AvgLoss: {:<8.3f} Time {:<8.3f}".format(
self.rank, loss_val, total_time)
print(log)
tb.add_scalar("Valid-Avg-Loss", loss_val, iteration)
@dg.no_grad
def infer(self, iteration):
self.waveflow.eval()
config = self.config
sample = config.sample
output = "{}/{}/iter-{}".format(config.output, config.name, iteration)
os.makedirs(output, exist_ok=True)
mels_list = [mels for _, mels in self.validloader()]
if sample is not None:
mels_list = [mels_list[sample]]
audio_times = []
inf_times = []
for sample, mel in enumerate(mels_list):
filename = "{}/valid_{}.wav".format(output, sample)
print("Synthesize sample {}, save as {}".format(sample, filename))
start_time = time.time()
audio = self.waveflow.synthesize(mel)
syn_time = time.time() - start_time
audio_time = audio.shape[0] / 22050
print("audio time {}, synthesis time {}, speedup: {}".format(
audio_time, syn_time, audio_time / syn_time))
#librosa.output.write_wav(filename, syn_audio,
# sr=config.sample_rate)
audio = audio.numpy() * 32768.0
audio = audio.astype('int16')
write(filename, config.sample_rate, audio)
audio_times.append(audio_time)
inf_times.append(syn_time)
total_audio = sum(audio_times)
total_inf = sum(inf_times)
print("Total audio: {}, total inf time {}, speedup: {}".format(
total_audio, total_inf, total_audio / total_inf))
def save(self, iteration):
utils.save_latest_parameters(self.checkpoint_dir, iteration,
self.waveflow, self.optimizer)
utils.save_latest_checkpoint(self.checkpoint_dir, iteration)