233 lines
7.6 KiB
Python
233 lines
7.6 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from paddle import fluid
|
|
import paddle.fluid.layers as F
|
|
import paddle.fluid.dygraph as dg
|
|
|
|
|
|
class Pool1D(dg.Layer):
|
|
"""
|
|
A Pool 1D block implemented with Pool2D.
|
|
"""
|
|
|
|
def __init__(self,
|
|
pool_size=-1,
|
|
pool_type='max',
|
|
pool_stride=1,
|
|
pool_padding=0,
|
|
global_pooling=False,
|
|
use_cudnn=True,
|
|
ceil_mode=False,
|
|
exclusive=True,
|
|
data_format='NCT'):
|
|
super(Pool1D, self).__init__()
|
|
self.pool_size = pool_size
|
|
self.pool_type = pool_type
|
|
self.pool_stride = pool_stride
|
|
self.pool_padding = pool_padding
|
|
self.global_pooling = global_pooling
|
|
self.use_cudnn = use_cudnn
|
|
self.ceil_mode = ceil_mode
|
|
self.exclusive = exclusive
|
|
self.data_format = data_format
|
|
|
|
self.pool2d = dg.Pool2D(
|
|
[1, pool_size],
|
|
pool_type=pool_type,
|
|
pool_stride=[1, pool_stride],
|
|
pool_padding=[0, pool_padding],
|
|
global_pooling=global_pooling,
|
|
use_cudnn=use_cudnn,
|
|
ceil_mode=ceil_mode,
|
|
exclusive=exclusive)
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Args:
|
|
x (Variable): Shape(B, C_in, 1, T), the input, where C_in means
|
|
input channels.
|
|
Returns:
|
|
x (Variable): Shape(B, C_out, 1, T), the outputs, where C_out means
|
|
output channels (num_filters).
|
|
"""
|
|
if self.data_format == 'NTC':
|
|
x = fluid.layers.transpose(x, [0, 2, 1])
|
|
x = fluid.layers.unsqueeze(x, [2])
|
|
x = self.pool2d(x)
|
|
x = fluid.layers.squeeze(x, [2])
|
|
if self.data_format == 'NTC':
|
|
x = fluid.layers.transpose(x, [0, 2, 1])
|
|
return x
|
|
|
|
|
|
class Conv1D(dg.Conv2D):
|
|
"""A standard Conv1D layer that use (B, C, T) data layout. It inherit Conv2D and
|
|
use (B, C, 1, T) data layout to compute 1D convolution. Nothing more.
|
|
NOTE: we inherit Conv2D instead of encapsulate a Conv2D layer to make it a simple
|
|
layer, instead of a complex one. So we can easily apply weight norm to it.
|
|
"""
|
|
|
|
def __init__(self,
|
|
num_channels,
|
|
num_filters,
|
|
filter_size,
|
|
stride=1,
|
|
padding=0,
|
|
dilation=1,
|
|
groups=None,
|
|
param_attr=None,
|
|
bias_attr=None,
|
|
use_cudnn=True,
|
|
act=None,
|
|
dtype='float32'):
|
|
super(Conv1D, self).__init__(
|
|
num_channels,
|
|
num_filters, (1, filter_size),
|
|
stride=(1, stride),
|
|
padding=(0, padding),
|
|
dilation=(1, dilation),
|
|
groups=groups,
|
|
param_attr=param_attr,
|
|
bias_attr=bias_attr,
|
|
use_cudnn=use_cudnn,
|
|
act=act,
|
|
dtype=dtype)
|
|
|
|
def forward(self, x):
|
|
x = F.unsqueeze(x, [2])
|
|
x = super(Conv1D, self).forward(x) # maybe risky here
|
|
x = F.squeeze(x, [2])
|
|
return x
|
|
|
|
|
|
class Conv1DTranspose(dg.Conv2DTranspose):
|
|
def __init__(self,
|
|
num_channels,
|
|
num_filters,
|
|
filter_size,
|
|
padding=0,
|
|
stride=1,
|
|
dilation=1,
|
|
groups=None,
|
|
param_attr=None,
|
|
bias_attr=None,
|
|
use_cudnn=True,
|
|
act=None,
|
|
dtype='float32'):
|
|
super(Conv1DTranspose, self).__init__(
|
|
num_channels,
|
|
num_filters, (1, filter_size),
|
|
output_size=None,
|
|
padding=(0, padding),
|
|
stride=(1, stride),
|
|
dilation=(1, dilation),
|
|
groups=groups,
|
|
param_attr=param_attr,
|
|
bias_attr=bias_attr,
|
|
use_cudnn=use_cudnn,
|
|
act=act,
|
|
dtype=dtype)
|
|
|
|
def forward(self, x):
|
|
x = F.unsqueeze(x, [2])
|
|
x = super(Conv1DTranspose, self).forward(x) # maybe risky here
|
|
x = F.squeeze(x, [2])
|
|
return x
|
|
|
|
|
|
class Conv1DCell(Conv1D):
|
|
"""A causal convolve-1d cell. It uses causal padding, padding(receptive_field -1, 0).
|
|
But Conv2D in dygraph does not support asymmetric padding yet, we just pad
|
|
(receptive_field -1, receptive_field -1) and drop last receptive_field -1 steps in
|
|
the output.
|
|
|
|
It is a cell that it acts like an RNN cell. It does not support stride > 1, and it
|
|
ensures 1-to-1 mapping from input time steps to output timesteps.
|
|
"""
|
|
|
|
def __init__(self,
|
|
num_channels,
|
|
num_filters,
|
|
filter_size,
|
|
dilation=1,
|
|
causal=False,
|
|
groups=None,
|
|
param_attr=None,
|
|
bias_attr=None,
|
|
use_cudnn=True,
|
|
act=None,
|
|
dtype='float32'):
|
|
receptive_field = 1 + dilation * (filter_size - 1)
|
|
padding = receptive_field - 1 if causal else receptive_field // 2
|
|
self._receptive_field = receptive_field
|
|
self.causal = causal
|
|
super(Conv1DCell, self).__init__(
|
|
num_channels,
|
|
num_filters,
|
|
filter_size,
|
|
stride=1,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
param_attr=param_attr,
|
|
bias_attr=bias_attr,
|
|
use_cudnn=use_cudnn,
|
|
act=act,
|
|
dtype=dtype)
|
|
|
|
def forward(self, x):
|
|
# it ensures that ouput time steps == input time steps
|
|
time_steps = x.shape[-1]
|
|
x = super(Conv1DCell, self).forward(x)
|
|
if x.shape[-1] != time_steps:
|
|
x = x[:, :, :time_steps]
|
|
return x
|
|
|
|
@property
|
|
def receptive_field(self):
|
|
return self._receptive_field
|
|
|
|
def start_sequence(self):
|
|
if not self.causal:
|
|
raise ValueError(
|
|
"Only causal conv1d shell should use start sequence")
|
|
if self.receptive_field == 1:
|
|
raise ValueError(
|
|
"Convolution block with receptive field = 1 does not need"
|
|
" to be implemented as a Conv1DCell. Conv1D suffices")
|
|
self._buffer = None
|
|
self._reshaped_weight = F.reshape(self.weight, (self._num_filters, -1))
|
|
|
|
def add_input(self, x_t):
|
|
batch_size, c_in, _ = x_t.shape
|
|
if self._buffer is None:
|
|
self._buffer = F.zeros(
|
|
(batch_size, c_in, self.receptive_field), dtype=x_t.dtype)
|
|
self._buffer = F.concat([self._buffer[:, :, 1:], x_t], -1)
|
|
if self._dilation[1] > 1:
|
|
input = F.strided_slice(
|
|
self._buffer,
|
|
axes=[2],
|
|
starts=[0],
|
|
ends=[self.receptive_field],
|
|
strides=[self._dilation[1]])
|
|
else:
|
|
input = self._buffer
|
|
input = F.reshape(input, (batch_size, -1))
|
|
y_t = F.matmul(input, self._reshaped_weight, transpose_y=True)
|
|
y_t = y_t + self.bias
|
|
y_t = F.unsqueeze(y_t, [-1])
|
|
return y_t
|