171 lines
5.8 KiB
Python
171 lines
5.8 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from tensorboardX import SummaryWriter
|
|
from scipy.io.wavfile import write
|
|
from collections import OrderedDict
|
|
import argparse
|
|
from pprint import pprint
|
|
from ruamel import yaml
|
|
from matplotlib import cm
|
|
import numpy as np
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.dygraph as dg
|
|
from parakeet.g2p.en import text_to_sequence
|
|
from parakeet import audio
|
|
from parakeet.models.fastspeech.fastspeech import FastSpeech
|
|
from parakeet.models.transformer_tts.utils import *
|
|
from parakeet.models.wavenet import WaveNet, UpsampleNet
|
|
from parakeet.models.clarinet import STFT, Clarinet, ParallelWaveNet
|
|
from parakeet.modules import weight_norm
|
|
from parakeet.models.waveflow import WaveFlowModule
|
|
from parakeet.utils.layer_tools import freeze
|
|
from parakeet.utils import io
|
|
|
|
|
|
def add_config_options_to_parser(parser):
|
|
parser.add_argument("--config", type=str, help="path of the config file")
|
|
parser.add_argument(
|
|
"--vocoder",
|
|
type=str,
|
|
default="griffin-lim",
|
|
choices=['griffin-lim', 'waveflow'],
|
|
help="vocoder method")
|
|
parser.add_argument(
|
|
"--config_vocoder", type=str, help="path of the vocoder config file")
|
|
parser.add_argument("--use_gpu", type=int, default=0, help="device to use")
|
|
parser.add_argument(
|
|
"--alpha",
|
|
type=float,
|
|
default=1,
|
|
help="determine the length of the expanded sequence mel, controlling the voice speed."
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--checkpoint", type=str, help="fastspeech checkpoint for synthesis")
|
|
parser.add_argument(
|
|
"--checkpoint_vocoder",
|
|
type=str,
|
|
help="vocoder checkpoint for synthesis")
|
|
|
|
parser.add_argument(
|
|
"--output",
|
|
type=str,
|
|
default="synthesis",
|
|
help="path to save experiment results")
|
|
|
|
|
|
def synthesis(text_input, args):
|
|
local_rank = dg.parallel.Env().local_rank
|
|
place = (fluid.CUDAPlace(local_rank) if args.use_gpu else fluid.CPUPlace())
|
|
fluid.enable_dygraph(place)
|
|
|
|
with open(args.config) as f:
|
|
cfg = yaml.load(f, Loader=yaml.Loader)
|
|
|
|
# tensorboard
|
|
if not os.path.exists(args.output):
|
|
os.mkdir(args.output)
|
|
|
|
writer = SummaryWriter(os.path.join(args.output, 'log'))
|
|
|
|
model = FastSpeech(cfg['network'], num_mels=cfg['audio']['num_mels'])
|
|
# Load parameters.
|
|
global_step = io.load_parameters(
|
|
model=model, checkpoint_path=args.checkpoint)
|
|
model.eval()
|
|
|
|
text = np.asarray(text_to_sequence(text_input))
|
|
text = np.expand_dims(text, axis=0)
|
|
pos_text = np.arange(1, text.shape[1] + 1)
|
|
pos_text = np.expand_dims(pos_text, axis=0)
|
|
|
|
text = dg.to_variable(text).astype(np.int64)
|
|
pos_text = dg.to_variable(pos_text).astype(np.int64)
|
|
|
|
_, mel_output_postnet = model(text, pos_text, alpha=args.alpha)
|
|
|
|
if args.vocoder == 'griffin-lim':
|
|
#synthesis use griffin-lim
|
|
wav = synthesis_with_griffinlim(mel_output_postnet, cfg['audio'])
|
|
elif args.vocoder == 'waveflow':
|
|
wav = synthesis_with_waveflow(mel_output_postnet, args,
|
|
args.checkpoint_vocoder, place)
|
|
else:
|
|
print(
|
|
'vocoder error, we only support griffinlim and waveflow, but recevied %s.'
|
|
% args.vocoder)
|
|
|
|
writer.add_audio(text_input + '(' + args.vocoder + ')', wav, 0,
|
|
cfg['audio']['sr'])
|
|
if not os.path.exists(os.path.join(args.output, 'samples')):
|
|
os.mkdir(os.path.join(args.output, 'samples'))
|
|
write(
|
|
os.path.join(
|
|
os.path.join(args.output, 'samples'), args.vocoder + '.wav'),
|
|
cfg['audio']['sr'], wav)
|
|
print("Synthesis completed !!!")
|
|
writer.close()
|
|
|
|
|
|
def synthesis_with_griffinlim(mel_output, cfg):
|
|
mel_output = fluid.layers.transpose(
|
|
fluid.layers.squeeze(mel_output, [0]), [1, 0])
|
|
mel_output = np.exp(mel_output.numpy())
|
|
basis = librosa.filters.mel(cfg['sr'],
|
|
cfg['n_fft'],
|
|
cfg['num_mels'],
|
|
fmin=cfg['fmin'],
|
|
fmax=cfg['fmax'])
|
|
inv_basis = np.linalg.pinv(basis)
|
|
spec = np.maximum(1e-10, np.dot(inv_basis, mel_output))
|
|
|
|
wav = librosa.core.griffinlim(
|
|
spec**cfg['power'],
|
|
hop_length=cfg['hop_length'],
|
|
win_length=cfg['win_length'])
|
|
|
|
return wav
|
|
|
|
|
|
def synthesis_with_waveflow(mel_output, args, checkpoint, place):
|
|
|
|
fluid.enable_dygraph(place)
|
|
args.config = args.config_vocoder
|
|
args.use_fp16 = False
|
|
config = io.add_yaml_config_to_args(args)
|
|
|
|
mel_spectrogram = fluid.layers.transpose(mel_output, [0, 2, 1])
|
|
|
|
# Build model.
|
|
waveflow = WaveFlowModule(config)
|
|
io.load_parameters(model=waveflow, checkpoint_path=checkpoint)
|
|
for layer in waveflow.sublayers():
|
|
if isinstance(layer, weight_norm.WeightNormWrapper):
|
|
layer.remove_weight_norm()
|
|
|
|
# Run model inference.
|
|
wav = waveflow.synthesize(mel_spectrogram, sigma=config.sigma)
|
|
return wav.numpy()[0]
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description="Synthesis model")
|
|
add_config_options_to_parser(parser)
|
|
args = parser.parse_args()
|
|
pprint(vars(args))
|
|
synthesis(
|
|
"Don't argue with the people of strong determination, because they may change the fact!",
|
|
args)
|