203 lines
7.1 KiB
Python
203 lines
7.1 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from scipy.io.wavfile import write
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
from matplotlib import cm
|
|
from tensorboardX import SummaryWriter
|
|
from ruamel import yaml
|
|
from pathlib import Path
|
|
import argparse
|
|
from pprint import pprint
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.dygraph as dg
|
|
from parakeet.g2p.en import text_to_sequence
|
|
from parakeet.models.transformer_tts.utils import *
|
|
from parakeet.models.transformer_tts import TransformerTTS
|
|
from parakeet.models.waveflow import WaveFlowModule
|
|
from parakeet.modules.weight_norm import WeightNormWrapper
|
|
from parakeet.utils import io
|
|
|
|
|
|
def add_config_options_to_parser(parser):
|
|
parser.add_argument("--config", type=str, help="path of the config file")
|
|
parser.add_argument("--use_gpu", type=int, default=0, help="device to use")
|
|
parser.add_argument(
|
|
"--stop_threshold",
|
|
type=float,
|
|
default=0.5,
|
|
help="The threshold of stop token which indicates the time step should stop generate spectrum or not."
|
|
)
|
|
parser.add_argument(
|
|
"--max_len",
|
|
type=int,
|
|
default=1000,
|
|
help="The max length of audio when synthsis.")
|
|
|
|
parser.add_argument(
|
|
"--checkpoint_transformer",
|
|
type=str,
|
|
help="transformer_tts checkpoint for synthesis")
|
|
parser.add_argument(
|
|
"--vocoder",
|
|
type=str,
|
|
default="griffin-lim",
|
|
choices=['griffin-lim', 'waveflow'],
|
|
help="vocoder method")
|
|
parser.add_argument(
|
|
"--config_vocoder", type=str, help="path of the vocoder config file")
|
|
parser.add_argument(
|
|
"--checkpoint_vocoder",
|
|
type=str,
|
|
help="vocoder checkpoint for synthesis")
|
|
|
|
parser.add_argument(
|
|
"--output",
|
|
type=str,
|
|
default="synthesis",
|
|
help="path to save experiment results")
|
|
|
|
|
|
def synthesis(text_input, args):
|
|
local_rank = dg.parallel.Env().local_rank
|
|
place = (fluid.CUDAPlace(local_rank) if args.use_gpu else fluid.CPUPlace())
|
|
|
|
with open(args.config) as f:
|
|
cfg = yaml.load(f, Loader=yaml.Loader)
|
|
|
|
# tensorboard
|
|
if not os.path.exists(args.output):
|
|
os.mkdir(args.output)
|
|
|
|
writer = SummaryWriter(os.path.join(args.output, 'log'))
|
|
|
|
fluid.enable_dygraph(place)
|
|
with fluid.unique_name.guard():
|
|
network_cfg = cfg['network']
|
|
model = TransformerTTS(
|
|
network_cfg['embedding_size'], network_cfg['hidden_size'],
|
|
network_cfg['encoder_num_head'], network_cfg['encoder_n_layers'],
|
|
cfg['audio']['num_mels'], network_cfg['outputs_per_step'],
|
|
network_cfg['decoder_num_head'], network_cfg['decoder_n_layers'])
|
|
# Load parameters.
|
|
global_step = io.load_parameters(
|
|
model=model, checkpoint_path=args.checkpoint_transformer)
|
|
model.eval()
|
|
|
|
# init input
|
|
text = np.asarray(text_to_sequence(text_input))
|
|
text = fluid.layers.unsqueeze(dg.to_variable(text).astype(np.int64), [0])
|
|
mel_input = dg.to_variable(np.zeros([1, 1, 80])).astype(np.float32)
|
|
pos_text = np.arange(1, text.shape[1] + 1)
|
|
pos_text = fluid.layers.unsqueeze(
|
|
dg.to_variable(pos_text).astype(np.int64), [0])
|
|
|
|
for i in range(args.max_len):
|
|
pos_mel = np.arange(1, mel_input.shape[1] + 1)
|
|
pos_mel = fluid.layers.unsqueeze(
|
|
dg.to_variable(pos_mel).astype(np.int64), [0])
|
|
mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(
|
|
text, mel_input, pos_text, pos_mel)
|
|
if stop_preds.numpy()[0, -1] > args.stop_threshold:
|
|
break
|
|
mel_input = fluid.layers.concat(
|
|
[mel_input, postnet_pred[:, -1:, :]], axis=1)
|
|
global_step = 0
|
|
for i, prob in enumerate(attn_probs):
|
|
for j in range(4):
|
|
x = np.uint8(cm.viridis(prob.numpy()[j]) * 255)
|
|
writer.add_image(
|
|
'Attention_%d_0' % global_step,
|
|
x,
|
|
i * 4 + j,
|
|
dataformats="HWC")
|
|
|
|
if args.vocoder == 'griffin-lim':
|
|
#synthesis use griffin-lim
|
|
wav = synthesis_with_griffinlim(postnet_pred, cfg['audio'])
|
|
elif args.vocoder == 'waveflow':
|
|
# synthesis use waveflow
|
|
wav = synthesis_with_waveflow(postnet_pred, args,
|
|
args.checkpoint_vocoder, place)
|
|
else:
|
|
print(
|
|
'vocoder error, we only support griffinlim and waveflow, but recevied %s.'
|
|
% args.vocoder)
|
|
|
|
writer.add_audio(text_input + '(' + args.vocoder + ')', wav, 0,
|
|
cfg['audio']['sr'])
|
|
if not os.path.exists(os.path.join(args.output, 'samples')):
|
|
os.mkdir(os.path.join(args.output, 'samples'))
|
|
write(
|
|
os.path.join(
|
|
os.path.join(args.output, 'samples'), args.vocoder + '.wav'),
|
|
cfg['audio']['sr'], wav)
|
|
print("Synthesis completed !!!")
|
|
writer.close()
|
|
|
|
|
|
def synthesis_with_griffinlim(mel_output, cfg):
|
|
# synthesis with griffin-lim
|
|
mel_output = fluid.layers.transpose(
|
|
fluid.layers.squeeze(mel_output, [0]), [1, 0])
|
|
mel_output = np.exp(mel_output.numpy())
|
|
basis = librosa.filters.mel(cfg['sr'],
|
|
cfg['n_fft'],
|
|
cfg['num_mels'],
|
|
fmin=cfg['fmin'],
|
|
fmax=cfg['fmax'])
|
|
inv_basis = np.linalg.pinv(basis)
|
|
spec = np.maximum(1e-10, np.dot(inv_basis, mel_output))
|
|
|
|
wav = librosa.core.griffinlim(
|
|
spec**cfg['power'],
|
|
hop_length=cfg['hop_length'],
|
|
win_length=cfg['win_length'])
|
|
|
|
return wav
|
|
|
|
|
|
def synthesis_with_waveflow(mel_output, args, checkpoint, place):
|
|
fluid.enable_dygraph(place)
|
|
args.config = args.config_vocoder
|
|
args.use_fp16 = False
|
|
config = io.add_yaml_config_to_args(args)
|
|
|
|
mel_spectrogram = fluid.layers.transpose(
|
|
fluid.layers.squeeze(mel_output, [0]), [1, 0])
|
|
mel_spectrogram = fluid.layers.unsqueeze(mel_spectrogram, [0])
|
|
|
|
# Build model.
|
|
waveflow = WaveFlowModule(config)
|
|
io.load_parameters(model=waveflow, checkpoint_path=checkpoint)
|
|
for layer in waveflow.sublayers():
|
|
if isinstance(layer, WeightNormWrapper):
|
|
layer.remove_weight_norm()
|
|
|
|
# Run model inference.
|
|
wav = waveflow.synthesize(mel_spectrogram, sigma=config.sigma)
|
|
return wav.numpy()[0]
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description="Synthesis model")
|
|
add_config_options_to_parser(parser)
|
|
args = parser.parse_args()
|
|
# Print the whole config setting.
|
|
pprint(vars(args))
|
|
synthesis(
|
|
"Life was like a box of chocolates, you never know what you're gonna get.",
|
|
args)
|