148 lines
5.1 KiB
Python
148 lines
5.1 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import random
|
|
|
|
import librosa
|
|
import numpy as np
|
|
from paddle import fluid
|
|
|
|
from parakeet.datasets import ljspeech
|
|
from parakeet.data import SpecBatcher, WavBatcher
|
|
from parakeet.data import DataCargo, DatasetMixin
|
|
from parakeet.data import DistributedSampler, BatchSampler
|
|
from scipy.io.wavfile import read
|
|
|
|
|
|
class Dataset(ljspeech.LJSpeech):
|
|
def __init__(self, config):
|
|
super(Dataset, self).__init__(config.root)
|
|
self.config = config
|
|
|
|
def _get_example(self, metadatum):
|
|
fname, _, _ = metadatum
|
|
wav_path = os.path.join(self.root, "wavs", fname + ".wav")
|
|
|
|
loaded_sr, audio = read(wav_path)
|
|
assert loaded_sr == self.config.sample_rate
|
|
|
|
return audio
|
|
|
|
|
|
class Subset(DatasetMixin):
|
|
def __init__(self, dataset, indices, valid):
|
|
self.dataset = dataset
|
|
self.indices = indices
|
|
self.valid = valid
|
|
self.config = dataset.config
|
|
|
|
def get_mel(self, audio):
|
|
spectrogram = librosa.core.stft(
|
|
audio,
|
|
n_fft=self.config.fft_size,
|
|
hop_length=self.config.fft_window_shift,
|
|
win_length=self.config.fft_window_size)
|
|
spectrogram_magnitude = np.abs(spectrogram)
|
|
|
|
# mel_filter_bank shape: [n_mels, 1 + n_fft/2]
|
|
mel_filter_bank = librosa.filters.mel(sr=self.config.sample_rate,
|
|
n_fft=self.config.fft_size,
|
|
n_mels=self.config.mel_bands,
|
|
fmin=self.config.mel_fmin,
|
|
fmax=self.config.mel_fmax)
|
|
# mel shape: [n_mels, num_frames]
|
|
mel = np.dot(mel_filter_bank, spectrogram_magnitude)
|
|
|
|
# Normalize mel.
|
|
clip_val = 1e-5
|
|
ref_constant = 1
|
|
mel = np.log(np.clip(mel, a_min=clip_val, a_max=None) * ref_constant)
|
|
|
|
return mel
|
|
|
|
def __getitem__(self, idx):
|
|
audio = self.dataset[self.indices[idx]]
|
|
segment_length = self.config.segment_length
|
|
|
|
if self.valid:
|
|
# whole audio for valid set
|
|
pass
|
|
else:
|
|
# Randomly crop segment_length from audios in the training set.
|
|
# audio shape: [len]
|
|
if audio.shape[0] >= segment_length:
|
|
max_audio_start = audio.shape[0] - segment_length
|
|
audio_start = random.randint(0, max_audio_start)
|
|
audio = audio[audio_start:(audio_start + segment_length)]
|
|
else:
|
|
audio = np.pad(audio, (0, segment_length - audio.shape[0]),
|
|
mode='constant',
|
|
constant_values=0)
|
|
|
|
# Normalize audio to the [-1, 1] range.
|
|
audio = audio.astype(np.float32) / 32768.0
|
|
mel = self.get_mel(audio)
|
|
|
|
return audio, mel
|
|
|
|
def _batch_examples(self, batch):
|
|
audios = [sample[0] for sample in batch]
|
|
mels = [sample[1] for sample in batch]
|
|
|
|
audios = WavBatcher(pad_value=0.0)(audios)
|
|
mels = SpecBatcher(pad_value=0.0)(mels)
|
|
|
|
return audios, mels
|
|
|
|
def __len__(self):
|
|
return len(self.indices)
|
|
|
|
|
|
class LJSpeech:
|
|
def __init__(self, config, nranks, rank):
|
|
place = fluid.CUDAPlace(rank) if config.use_gpu else fluid.CPUPlace()
|
|
|
|
# Whole LJSpeech dataset.
|
|
ds = Dataset(config)
|
|
|
|
# Split into train and valid dataset.
|
|
indices = list(range(len(ds)))
|
|
train_indices = indices[config.valid_size:]
|
|
valid_indices = indices[:config.valid_size]
|
|
random.shuffle(train_indices)
|
|
|
|
# Train dataset.
|
|
trainset = Subset(ds, train_indices, valid=False)
|
|
sampler = DistributedSampler(len(trainset), nranks, rank)
|
|
total_bs = config.batch_size
|
|
assert total_bs % nranks == 0
|
|
train_sampler = BatchSampler(
|
|
sampler, total_bs // nranks, drop_last=True)
|
|
trainloader = DataCargo(trainset, batch_sampler=train_sampler)
|
|
|
|
trainreader = fluid.io.PyReader(capacity=50, return_list=True)
|
|
trainreader.decorate_batch_generator(trainloader, place)
|
|
self.trainloader = (data for _ in iter(int, 1)
|
|
for data in trainreader())
|
|
|
|
# Valid dataset.
|
|
validset = Subset(ds, valid_indices, valid=True)
|
|
# Currently only support batch_size = 1 for valid loader.
|
|
validloader = DataCargo(validset, batch_size=1, shuffle=False)
|
|
|
|
validreader = fluid.io.PyReader(capacity=20, return_list=True)
|
|
validreader.decorate_batch_generator(validloader, place)
|
|
self.validloader = validreader
|