133 lines
3.8 KiB
Python
133 lines
3.8 KiB
Python
import os
|
|
import random
|
|
import subprocess
|
|
import time
|
|
from pprint import pprint
|
|
|
|
import argparse
|
|
import numpy as np
|
|
import paddle.fluid.dygraph as dg
|
|
from paddle import fluid
|
|
from tensorboardX import SummaryWriter
|
|
|
|
import utils
|
|
from parakeet.models.waveflow import WaveFlow
|
|
|
|
|
|
def add_options_to_parser(parser):
|
|
parser.add_argument(
|
|
'--model',
|
|
type=str,
|
|
default='waveflow',
|
|
help="general name of the model")
|
|
parser.add_argument(
|
|
'--name', type=str, help="specific name of the training model")
|
|
parser.add_argument(
|
|
'--root', type=str, help="root path of the LJSpeech dataset")
|
|
|
|
parser.add_argument(
|
|
'--parallel',
|
|
type=utils.str2bool,
|
|
default=True,
|
|
help="option to use data parallel training")
|
|
parser.add_argument(
|
|
'--use_gpu',
|
|
type=utils.str2bool,
|
|
default=True,
|
|
help="option to use gpu training")
|
|
|
|
parser.add_argument(
|
|
'--iteration',
|
|
type=int,
|
|
default=None,
|
|
help=("which iteration of checkpoint to load, "
|
|
"default to load the latest checkpoint"))
|
|
parser.add_argument(
|
|
'--checkpoint',
|
|
type=str,
|
|
default=None,
|
|
help="path of the checkpoint to load")
|
|
|
|
|
|
def train(config):
|
|
use_gpu = config.use_gpu
|
|
parallel = config.parallel if use_gpu else False
|
|
|
|
# Get the rank of the current training process.
|
|
rank = dg.parallel.Env().local_rank if parallel else 0
|
|
nranks = dg.parallel.Env().nranks if parallel else 1
|
|
|
|
if rank == 0:
|
|
# Print the whole config setting.
|
|
pprint(vars(config))
|
|
|
|
# Make checkpoint directory.
|
|
run_dir = os.path.join("runs", config.model, config.name)
|
|
checkpoint_dir = os.path.join(run_dir, "checkpoint")
|
|
if not os.path.exists(checkpoint_dir):
|
|
os.makedirs(checkpoint_dir)
|
|
|
|
# Create tensorboard logger.
|
|
tb = SummaryWriter(os.path.join(run_dir, "logs")) \
|
|
if rank == 0 else None
|
|
|
|
# Configurate device
|
|
place = fluid.CUDAPlace(rank) if use_gpu else fluid.CPUPlace()
|
|
|
|
with dg.guard(place):
|
|
# Fix random seed.
|
|
seed = config.seed
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
fluid.default_startup_program().random_seed = seed
|
|
fluid.default_main_program().random_seed = seed
|
|
print("Random Seed: ", seed)
|
|
|
|
# Build model.
|
|
model = WaveFlow(config, checkpoint_dir, parallel, rank, nranks, tb)
|
|
model.build()
|
|
|
|
# Obtain the current iteration.
|
|
if config.checkpoint is None:
|
|
if config.iteration is None:
|
|
iteration = utils.load_latest_checkpoint(checkpoint_dir, rank)
|
|
else:
|
|
iteration = config.iteration
|
|
else:
|
|
iteration = int(config.checkpoint.split('/')[-1].split('-')[-1])
|
|
|
|
while iteration < config.max_iterations:
|
|
# Run one single training step.
|
|
model.train_step(iteration)
|
|
|
|
iteration += 1
|
|
|
|
if iteration % config.test_every == 0:
|
|
# Run validation step.
|
|
model.valid_step(iteration)
|
|
|
|
if rank == 0 and iteration % config.save_every == 0:
|
|
# Save parameters.
|
|
model.save(iteration)
|
|
|
|
# Close TensorBoard.
|
|
if rank == 0:
|
|
tb.close()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Create parser.
|
|
parser = argparse.ArgumentParser(description="Train WaveFlow model")
|
|
#formatter_class='default_argparse')
|
|
add_options_to_parser(parser)
|
|
utils.add_config_options_to_parser(parser)
|
|
|
|
# Parse argument from both command line and yaml config file.
|
|
# For conflicting updates to the same field,
|
|
# the preceding update will be overwritten by the following one.
|
|
config = parser.parse_args()
|
|
config = utils.add_yaml_config(config)
|
|
# Force to use fp32 in model training
|
|
vars(config)["use_fp16"] = False
|
|
train(config)
|