Parakeet/parakeet/data/dataset.py

192 lines
5.6 KiB
Python

import six
import numpy as np
class DatasetMixin(object):
"""standard indexing interface for dataset."""
def __getitem__(self, index):
if isinstance(index, slice):
start, stop, step = index.indices(len(self))
return [
self.get_example(i)
for i in six.moves.range(start, stop, step)
]
elif isinstance(index, (list, np.ndarray)):
return [self.get_example(i) for i in index]
else:
# assumes it an integer
return self.get_example(index)
def get_example(self, i):
raise NotImplementedError
def __len__(self):
raise NotImplementedError
def __iter__(self):
for i in range(len(self)):
yield self.get_example(i)
class TransformDataset(DatasetMixin):
"""Transform a dataset to another with a transform."""
def __init__(self, dataset, transform):
self._dataset = dataset
self._transform = transform
def __len__(self):
return len(self._dataset)
def get_example(self, i):
# CAUTION: only int is supported?
# CAUTION: dataset support support __getitem__ and __len__
in_data = self._dataset[i]
return self._transform(in_data)
class TupleDataset(object):
def __init__(self, *datasets):
if not datasets:
raise ValueError("no datasets are given")
length = len(datasets[0])
for i, dataset in enumerate(datasets):
if len(datasets) != length:
raise ValueError(
"all the datasets should have the same length."
"dataset {} has a different length".format(i))
self._datasets = datasets
self._length = length
def __getitem__(self, index):
# SOA
batches = [dataset[index] for dataset in self._datasets]
if isinstance(index, slice):
length = len(batches[0])
# AOS
return [
tuple([batch[i] for batch in batches])
for i in six.moves.range(length)
]
else:
return tuple(batches)
def __len__(self):
return self._length
class DictDataset(object):
def __init__(self, **datasets):
if not datasets:
raise ValueError("no datasets are given")
length = None
for key, dataset in six.iteritems(datasets):
if length is None:
length = len(dataset)
elif len(datasets) != length:
raise ValueError(
"all the datasets should have the same length."
"dataset {} has a different length".format(key))
self._datasets = datasets
self._length = length
def __getitem__(self, index):
batches = {
key: dataset[index]
for key, dataset in six.iteritems(self._datasets)
}
if isinstance(index, slice):
length = len(six.next(six.itervalues(batches)))
return [{key: batch[i]
for key, batch in six.iteritems(batches)}
for i in six.moves.range(length)]
else:
return batches
class SliceDataset(DatasetMixin):
def __init__(self, dataset, start, finish, order=None):
if start < 0 or finish > len(dataset):
raise ValueError("subset overruns the dataset.")
self._dataset = dataset
self._start = start
self._finish = finish
self._size = finish - start
if order is not None and len(order) != len(dataset):
raise ValueError(
"order should have the same length as the dataset"
"len(order) = {} which does not euqals len(dataset) = {} ".
format(len(order), len(dataset)))
self._order = order
def len(self):
return self._size
def get_example(self, i):
if i >= 0:
if i >= self._size:
raise IndexError('dataset index out of range')
index = self._start + i
else:
if i < -self._size:
raise IndexError('dataset index out of range')
index = self._finish + i
if self._order is not None:
index = self._order[index]
return self._dataset[index]
class SubsetDataset(DatasetMixin):
def __init__(self, dataset, indices):
self._dataset = dataset
if len(indices) > len(dataset):
raise ValueError("subset's size larger that dataset's size!")
self._indices = indices
self._size = len(indices)
def __len__(self):
return self._size
def get_example(self, i):
index = self._indices[i]
return self._dataset[index]
class FilterDataset(DatasetMixin):
def __init__(self, dataset, filter_fn):
self._dataset = dataset
self._indices = [
i for i in range(len(dataset)) if filter_fn(dataset[i])
]
self._size = len(self._indices)
def __len__(self):
return self._size
def get_example(self, i):
index = self._indices[i]
return self._dataset[index]
class ChainDataset(DatasetMixin):
def __init__(self, *datasets):
self._datasets = datasets
def __len__(self):
return sum(len(dataset) for dataset in self._datasets)
def get_example(self, i):
if i < 0:
raise IndexError(
"ChainDataset doesnot support negative indexing.")
for dataset in self._datasets:
if i < len(dataset):
return dataset[i]
i -= len(dataset)
raise IndexError("dataset index out of range")