192 lines
5.6 KiB
Python
192 lines
5.6 KiB
Python
import six
|
|
import numpy as np
|
|
|
|
|
|
class DatasetMixin(object):
|
|
"""standard indexing interface for dataset."""
|
|
|
|
def __getitem__(self, index):
|
|
if isinstance(index, slice):
|
|
start, stop, step = index.indices(len(self))
|
|
return [
|
|
self.get_example(i)
|
|
for i in six.moves.range(start, stop, step)
|
|
]
|
|
elif isinstance(index, (list, np.ndarray)):
|
|
return [self.get_example(i) for i in index]
|
|
else:
|
|
# assumes it an integer
|
|
return self.get_example(index)
|
|
|
|
def get_example(self, i):
|
|
raise NotImplementedError
|
|
|
|
def __len__(self):
|
|
raise NotImplementedError
|
|
|
|
def __iter__(self):
|
|
for i in range(len(self)):
|
|
yield self.get_example(i)
|
|
|
|
|
|
class TransformDataset(DatasetMixin):
|
|
"""Transform a dataset to another with a transform."""
|
|
|
|
def __init__(self, dataset, transform):
|
|
self._dataset = dataset
|
|
self._transform = transform
|
|
|
|
def __len__(self):
|
|
return len(self._dataset)
|
|
|
|
def get_example(self, i):
|
|
# CAUTION: only int is supported?
|
|
# CAUTION: dataset support support __getitem__ and __len__
|
|
in_data = self._dataset[i]
|
|
return self._transform(in_data)
|
|
|
|
|
|
class TupleDataset(object):
|
|
def __init__(self, *datasets):
|
|
if not datasets:
|
|
raise ValueError("no datasets are given")
|
|
length = len(datasets[0])
|
|
for i, dataset in enumerate(datasets):
|
|
if len(datasets) != length:
|
|
raise ValueError(
|
|
"all the datasets should have the same length."
|
|
"dataset {} has a different length".format(i))
|
|
self._datasets = datasets
|
|
self._length = length
|
|
|
|
def __getitem__(self, index):
|
|
# SOA
|
|
batches = [dataset[index] for dataset in self._datasets]
|
|
if isinstance(index, slice):
|
|
length = len(batches[0])
|
|
# AOS
|
|
return [
|
|
tuple([batch[i] for batch in batches])
|
|
for i in six.moves.range(length)
|
|
]
|
|
else:
|
|
return tuple(batches)
|
|
|
|
def __len__(self):
|
|
return self._length
|
|
|
|
|
|
class DictDataset(object):
|
|
def __init__(self, **datasets):
|
|
if not datasets:
|
|
raise ValueError("no datasets are given")
|
|
length = None
|
|
for key, dataset in six.iteritems(datasets):
|
|
if length is None:
|
|
length = len(dataset)
|
|
elif len(datasets) != length:
|
|
raise ValueError(
|
|
"all the datasets should have the same length."
|
|
"dataset {} has a different length".format(key))
|
|
self._datasets = datasets
|
|
self._length = length
|
|
|
|
def __getitem__(self, index):
|
|
batches = {
|
|
key: dataset[index]
|
|
for key, dataset in six.iteritems(self._datasets)
|
|
}
|
|
if isinstance(index, slice):
|
|
length = len(six.next(six.itervalues(batches)))
|
|
return [{key: batch[i]
|
|
for key, batch in six.iteritems(batches)}
|
|
for i in six.moves.range(length)]
|
|
else:
|
|
return batches
|
|
|
|
|
|
class SliceDataset(DatasetMixin):
|
|
def __init__(self, dataset, start, finish, order=None):
|
|
if start < 0 or finish > len(dataset):
|
|
raise ValueError("subset overruns the dataset.")
|
|
self._dataset = dataset
|
|
self._start = start
|
|
self._finish = finish
|
|
self._size = finish - start
|
|
|
|
if order is not None and len(order) != len(dataset):
|
|
raise ValueError(
|
|
"order should have the same length as the dataset"
|
|
"len(order) = {} which does not euqals len(dataset) = {} ".
|
|
format(len(order), len(dataset)))
|
|
self._order = order
|
|
|
|
def len(self):
|
|
return self._size
|
|
|
|
def get_example(self, i):
|
|
if i >= 0:
|
|
if i >= self._size:
|
|
raise IndexError('dataset index out of range')
|
|
index = self._start + i
|
|
else:
|
|
if i < -self._size:
|
|
raise IndexError('dataset index out of range')
|
|
index = self._finish + i
|
|
|
|
if self._order is not None:
|
|
index = self._order[index]
|
|
return self._dataset[index]
|
|
|
|
|
|
class SubsetDataset(DatasetMixin):
|
|
def __init__(self, dataset, indices):
|
|
self._dataset = dataset
|
|
if len(indices) > len(dataset):
|
|
raise ValueError("subset's size larger that dataset's size!")
|
|
self._indices = indices
|
|
self._size = len(indices)
|
|
|
|
def __len__(self):
|
|
return self._size
|
|
|
|
def get_example(self, i):
|
|
index = self._indices[i]
|
|
return self._dataset[index]
|
|
|
|
|
|
class FilterDataset(DatasetMixin):
|
|
def __init__(self, dataset, filter_fn):
|
|
self._dataset = dataset
|
|
self._indices = [
|
|
i for i in range(len(dataset)) if filter_fn(dataset[i])
|
|
]
|
|
self._size = len(self._indices)
|
|
|
|
def __len__(self):
|
|
return self._size
|
|
|
|
def get_example(self, i):
|
|
index = self._indices[i]
|
|
return self._dataset[index]
|
|
|
|
|
|
class ChainDataset(DatasetMixin):
|
|
def __init__(self, *datasets):
|
|
self._datasets = datasets
|
|
|
|
def __len__(self):
|
|
return sum(len(dataset) for dataset in self._datasets)
|
|
|
|
def get_example(self, i):
|
|
if i < 0:
|
|
raise IndexError(
|
|
"ChainDataset doesnot support negative indexing.")
|
|
|
|
for dataset in self._datasets:
|
|
if i < len(dataset):
|
|
return dataset[i]
|
|
i -= len(dataset)
|
|
|
|
raise IndexError("dataset index out of range")
|