2020-12-18 19:59:34 +08:00
|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import paddle
|
2021-05-13 17:49:50 +08:00
|
|
|
import numpy as np
|
|
|
|
from matplotlib import pyplot as plt
|
|
|
|
|
2020-12-18 19:59:34 +08:00
|
|
|
from parakeet.frontend import EnglishCharacter
|
|
|
|
from parakeet.models.tacotron2 import Tacotron2
|
2021-05-13 17:49:50 +08:00
|
|
|
from parakeet.utils import display
|
2020-12-18 19:59:34 +08:00
|
|
|
|
|
|
|
from config import get_cfg_defaults
|
|
|
|
|
|
|
|
|
|
|
|
def main(config, args):
|
|
|
|
paddle.set_device(args.device)
|
|
|
|
|
|
|
|
# model
|
|
|
|
frontend = EnglishCharacter()
|
2021-05-13 17:49:50 +08:00
|
|
|
model = Tacotron2.from_pretrained(config, args.checkpoint_path)
|
2020-12-18 19:59:34 +08:00
|
|
|
model.eval()
|
|
|
|
|
|
|
|
# inputs
|
|
|
|
input_path = Path(args.input).expanduser()
|
|
|
|
with open(input_path, "rt") as f:
|
|
|
|
sentences = f.readlines()
|
|
|
|
|
|
|
|
if args.output is None:
|
|
|
|
output_dir = input_path.parent / "synthesis"
|
|
|
|
else:
|
|
|
|
output_dir = Path(args.output).expanduser()
|
|
|
|
output_dir.mkdir(exist_ok=True)
|
|
|
|
|
|
|
|
for i, sentence in enumerate(sentences):
|
2021-05-13 17:49:50 +08:00
|
|
|
sentence = paddle.to_tensor(frontend(sentence)).unsqueeze(0)
|
|
|
|
|
|
|
|
outputs = model.infer(sentence)
|
|
|
|
mel_output = outputs["mel_outputs_postnet"][0].numpy().T
|
|
|
|
alignment = outputs["alignments"][0].numpy().T
|
2020-12-18 19:59:34 +08:00
|
|
|
|
|
|
|
np.save(str(output_dir / f"sentence_{i}"), mel_output)
|
2021-05-13 17:49:50 +08:00
|
|
|
display.plot_alignment(alignment)
|
|
|
|
plt.savefig(str(output_dir / f"sentence_{i}.png"))
|
2020-12-18 19:59:34 +08:00
|
|
|
if args.verbose:
|
|
|
|
print("spectrogram saved at {}".format(output_dir /
|
|
|
|
f"sentence_{i}.npy"))
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
config = get_cfg_defaults()
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(
|
|
|
|
description="generate mel spectrogram with TransformerTTS.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--config",
|
|
|
|
type=str,
|
|
|
|
metavar="FILE",
|
|
|
|
help="extra config to overwrite the default config")
|
|
|
|
parser.add_argument(
|
|
|
|
"--checkpoint_path", type=str, help="path of the checkpoint to load.")
|
|
|
|
parser.add_argument("--input", type=str, help="path of the text sentences")
|
|
|
|
parser.add_argument("--output", type=str, help="path to save outputs")
|
|
|
|
parser.add_argument(
|
|
|
|
"--device", type=str, default="cpu", help="device type to use.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--opts",
|
|
|
|
nargs=argparse.REMAINDER,
|
|
|
|
help="options to overwrite --config file and the default config, passing in KEY VALUE pairs"
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"-v", "--verbose", action="store_true", help="print msg")
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.config:
|
|
|
|
config.merge_from_file(args.config)
|
|
|
|
if args.opts:
|
|
|
|
config.merge_from_list(args.opts)
|
|
|
|
config.freeze()
|
|
|
|
print(config)
|
|
|
|
print(args)
|
|
|
|
|
|
|
|
main(config, args)
|