2020-02-11 16:56:28 +08:00
|
|
|
import math
|
|
|
|
import paddle.fluid.dygraph as dg
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
import paddle.fluid.layers as layers
|
|
|
|
|
|
|
|
class PreNet(dg.Layer):
|
|
|
|
def __init__(self, input_size, hidden_size, output_size, dropout_rate=0.2):
|
|
|
|
"""
|
|
|
|
:param input_size: dimension of input
|
|
|
|
:param hidden_size: dimension of hidden unit
|
|
|
|
:param output_size: dimension of output
|
|
|
|
"""
|
|
|
|
super(PreNet, self).__init__()
|
|
|
|
self.input_size = input_size
|
|
|
|
self.hidden_size = hidden_size
|
|
|
|
self.output_size = output_size
|
|
|
|
self.dropout_rate = dropout_rate
|
|
|
|
|
|
|
|
k = math.sqrt(1 / input_size)
|
|
|
|
self.linear1 = dg.Linear(input_size, hidden_size,
|
|
|
|
param_attr=fluid.ParamAttr(initializer = fluid.initializer.XavierInitializer()),
|
|
|
|
bias_attr=fluid.ParamAttr(initializer = fluid.initializer.Uniform(low=-k, high=k)))
|
|
|
|
k = math.sqrt(1 / hidden_size)
|
|
|
|
self.linear2 = dg.Linear(hidden_size, output_size,
|
|
|
|
param_attr=fluid.ParamAttr(initializer = fluid.initializer.XavierInitializer()),
|
|
|
|
bias_attr=fluid.ParamAttr(initializer = fluid.initializer.Uniform(low=-k, high=k)))
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
"""
|
|
|
|
Pre Net before passing through the network.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (Variable): Shape(B, T, C), dtype: float32. The input value.
|
|
|
|
Returns:
|
|
|
|
x (Variable), Shape(B, T, C), the result after pernet.
|
|
|
|
"""
|
2020-03-05 15:08:12 +08:00
|
|
|
x = layers.dropout(layers.relu(self.linear1(x)), self.dropout_rate, dropout_implementation='upscale_in_train')
|
|
|
|
x = layers.dropout(layers.relu(self.linear2(x)), self.dropout_rate, dropout_implementation='upscale_in_train')
|
2020-02-11 16:56:28 +08:00
|
|
|
return x
|