ParakeetEricRoss/parakeet/modules/positional_encoding.py

61 lines
1.9 KiB
Python
Raw Normal View History

2020-12-20 13:15:07 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2020-10-10 15:51:54 +08:00
import math
import numpy as np
2020-10-10 15:51:54 +08:00
import paddle
from paddle.nn import functional as F
__all__ = ["sinusoid_positional_encoding"]
2020-12-20 13:15:07 +08:00
def sinusoid_positional_encoding(start_index, length, size, dtype=None):
r"""Generate standard positional encoding matrix.
.. math::
2020-10-10 15:51:54 +08:00
pe(pos, 2i) = sin(\frac{pos}{10000^{\frac{2i}{size}}}) \\
pe(pos, 2i+1) = cos(\frac{pos}{10000^{\frac{2i}{size}}})
2020-10-10 15:51:54 +08:00
Parameters
----------
start_index : int
The start index.
length : int
The timesteps of the positional encoding to generate.
size : int
Feature size of positional encoding.
2020-10-10 15:51:54 +08:00
Returns
-------
Tensor [shape=(length, size)]
The positional encoding.
Raises
------
ValueError
If ``size`` is not divisible by 2.
2020-10-10 15:51:54 +08:00
"""
if (size % 2 != 0):
raise ValueError("size should be divisible by 2")
2020-10-14 10:05:26 +08:00
dtype = dtype or paddle.get_default_dtype()
channel = np.arange(0, size, 2)
index = np.arange(start_index, start_index + length, 1)
2020-12-20 13:15:07 +08:00
p = np.expand_dims(index, -1) / (10000**(channel / float(size)))
encodings = np.zeros([length, size])
encodings[:, 0::2] = np.sin(p)
encodings[:, 1::2] = np.cos(p)
encodings = paddle.to_tensor(encodings)
2020-10-10 15:51:54 +08:00
return encodings