2020-10-10 15:51:54 +08:00
|
|
|
import paddle
|
|
|
|
from paddle import nn
|
|
|
|
|
|
|
|
class Conv1dCell(nn.Conv1d):
|
|
|
|
"""
|
|
|
|
A subclass of Conv1d layer, which can be used like an RNN cell. It can take
|
|
|
|
step input and return step output. It is done by keeping an internal buffer,
|
|
|
|
when adding a step input, we shift the buffer and return a step output. For
|
|
|
|
single step case, convolution devolves to a linear transformation.
|
|
|
|
|
|
|
|
That it can be used as a cell depends on several restrictions:
|
|
|
|
1. stride must be 1;
|
|
|
|
2. padding must be an asymmetric padding (recpetive_field - 1, 0).
|
|
|
|
|
|
|
|
As a result, these arguments are removed form the initializer.
|
|
|
|
"""
|
|
|
|
def __init__(self,
|
|
|
|
in_channels,
|
|
|
|
out_channels,
|
|
|
|
kernel_size,
|
|
|
|
dilation=1,
|
|
|
|
weight_attr=None,
|
|
|
|
bias_attr=None):
|
|
|
|
_dilation = dilation[0] if isinstance(dilation, (tuple, list)) else dilation
|
|
|
|
_kernel_size = kernel_size[0] if isinstance(kernel_size, (tuple, list)) else kernel_size
|
|
|
|
self._r = 1 + (_kernel_size - 1) * _dilation
|
|
|
|
super(Conv1dCell, self).__init__(
|
|
|
|
in_channels,
|
|
|
|
out_channels,
|
|
|
|
kernel_size,
|
|
|
|
padding=(self._r - 1, 0),
|
|
|
|
dilation=dilation,
|
|
|
|
weight_attr=weight_attr,
|
|
|
|
bias_attr=bias_attr,
|
|
|
|
data_format="NCL")
|
|
|
|
|
|
|
|
@property
|
|
|
|
def receptive_field(self):
|
|
|
|
return self._r
|
|
|
|
|
|
|
|
def start_sequence(self):
|
|
|
|
if self.training:
|
|
|
|
raise Exception("only use start_sequence in evaluation")
|
|
|
|
self._buffer = None
|
|
|
|
self._reshaped_weight = paddle.reshape(
|
|
|
|
self.weight, (self._out_channels, -1))
|
|
|
|
|
|
|
|
def initialize_buffer(self, x_t):
|
|
|
|
batch_size, _ = x_t.shape
|
|
|
|
self._buffer = paddle.zeros(
|
|
|
|
(batch_size, self._in_channels, self.receptive_field),
|
|
|
|
dtype=x_t.dtype)
|
|
|
|
|
|
|
|
def update_buffer(self, x_t):
|
|
|
|
self._buffer = paddle.concat(
|
|
|
|
[self._buffer[:, :, 1:], paddle.unsqueeze(x_t, -1)], -1)
|
|
|
|
|
|
|
|
def add_input(self, x_t):
|
|
|
|
"""
|
|
|
|
Arguments:
|
|
|
|
x_t (Tensor): shape (batch_size, in_channels), step input.
|
|
|
|
Rerurns:
|
|
|
|
y_t (Tensor): shape (batch_size, out_channels), step output.
|
|
|
|
"""
|
|
|
|
batch_size = x_t.shape[0]
|
|
|
|
if self.receptive_field > 1:
|
|
|
|
if self._buffer is None:
|
|
|
|
self.initialize_buffer(x_t)
|
|
|
|
|
|
|
|
# update buffer
|
|
|
|
self.update_buffer(x_t)
|
|
|
|
if self._dilation[0] > 1:
|
|
|
|
input = self._buffer[:, :, ::self._dilation[0]]
|
|
|
|
else:
|
|
|
|
input = self._buffer
|
|
|
|
input = paddle.reshape(input, (batch_size, -1))
|
|
|
|
else:
|
|
|
|
input = x_t
|
|
|
|
y_t = paddle.matmul(input, self._reshaped_weight, transpose_y=True)
|
|
|
|
y_t = y_t + self.bias
|
|
|
|
return y_t
|
2020-10-14 10:05:26 +08:00
|
|
|
|
|
|
|
|
|
|
|
class Conv1dBatchNorm(nn.Layer):
|
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0,
|
|
|
|
weight_attr=None, bias_attr=None):
|
|
|
|
super(Conv1dBatchNorm, self).__init__()
|
|
|
|
# TODO(chenfeiyu): carefully initialize Conv1d's weight
|
|
|
|
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride,
|
|
|
|
padding=padding,
|
|
|
|
weight_attr=weight_attr,
|
|
|
|
bias_attr=bias_attr)
|
|
|
|
# TODO: channel last, but BatchNorm1d does not support channel last layout
|
|
|
|
self.bn = nn.BatchNorm1d(out_channels)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return self.bn(self.conv(x))
|
|
|
|
|