ParakeetEricRoss/examples/tacotron2_aishell3/process_wav.py

97 lines
3.1 KiB
Python
Raw Normal View History

add ge2e and tacotron2_aishell3 example (#107) * hacky thing, add tone support for acoustic model * fix experiments for waveflow and wavenet, only write visual log in rank-0 * use emb add in tacotron2 * 1. remove space from numericalized representation; 2. fix decoder paddign mask's unsqueeze dim. * remove bn in postnet * refactoring code * add an option to normalize volume when loading audio. * add an embedding layer. * 1. change the default min value of LogMagnitude to 1e-5; 2. remove stop logit prediction from tacotron2 model. * WIP: baker * add ge2e * fix lstm speaker encoder * fix lstm speaker encoder * fix speaker encoder and add support for 2 more datasets * simplify visualization code * add a simple strategy to support multispeaker for tacotron. * add vctk example for refactored tacotron * fix indentation * fix class name * fix visualizer * fix root path * fix root path * fix root path * fix typos * fix bugs * fix text log extention name * add example for baker and aishell3 * update experiment and display * format code for tacotron_vctk, add plot_waveform to display * add new trainer * minor fix * add global condition support for tacotron2 * add gst layer * add 2 frontend * fix fmax for example/waveflow * update collate function, data loader not does not convert nested list into numpy array. * WIP: add hifigan * WIP:update hifigan * change stft to use conv1d * add audio datasets * change batch_text_id, batch_spec, batch_wav to include valid lengths in the returned value * change wavenet to use on-the-fly prepeocessing * fix typos * resolve conflict * remove imports that are removed * remove files not included in this release * remove imports to deleted modules * move tacotron2_msp * clean code * fix argument order * fix argument name * clean code for data processing * WIP: add README * add more details to thr README, fix some preprocess scripts * add voice cloning notebook * add an optional to alter the loss and model structure of tacotron2, add an alternative config * add plot_multiple_attentions and update visualization code in transformer_tts * format code * remove tacotron2_msp * update tacotron2 from_pretrained, update setup.py * update tacotron2 * update tacotron_aishell3's README * add images for exampels/tacotron2_aishell3's README * update README for examples/ge2e * add STFT back * add extra_config keys into the default config of tacotron * fix typos and docs * update README and doc * update docstrings for tacotron * update doc * update README * add links to downlaod pretrained models * refine READMEs and clean code * add praatio into requirements for running the experiments * format code with pre-commit * simplify text processing code and update notebook
2021-05-13 17:49:50 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from pathlib import Path
from multiprocessing import Pool
from functools import partial
import numpy as np
import librosa
import soundfile as sf
from tqdm import tqdm
from praatio import tgio
def get_valid_part(fpath):
f = tgio.openTextgrid(fpath)
start = 0
phone_entry_list = f.tierDict['phones'].entryList
first_entry = phone_entry_list[0]
if first_entry.label == "sil":
start = first_entry.end
last_entry = phone_entry_list[-1]
if last_entry.label == "sp":
end = last_entry.start
else:
end = last_entry.end
return start, end
def process_utterance(fpath, source_dir, target_dir, alignment_dir):
rel_path = fpath.relative_to(source_dir)
opath = target_dir / rel_path
apath = (alignment_dir / rel_path).with_suffix(".TextGrid")
opath.parent.mkdir(parents=True, exist_ok=True)
start, end = get_valid_part(apath)
wav, _ = librosa.load(fpath, sr=22050, offset=start, duration=end - start)
normalized_wav = wav / np.max(wav) * 0.999
sf.write(opath, normalized_wav, samplerate=22050, subtype='PCM_16')
# print(f"{fpath} => {opath}")
def preprocess_aishell3(source_dir, target_dir, alignment_dir):
source_dir = Path(source_dir).expanduser()
target_dir = Path(target_dir).expanduser()
alignment_dir = Path(alignment_dir).expanduser()
wav_paths = list(source_dir.rglob("*.wav"))
print(f"there are {len(wav_paths)} audio files in total")
fx = partial(
process_utterance,
source_dir=source_dir,
target_dir=target_dir,
alignment_dir=alignment_dir)
with Pool(16) as p:
list(
tqdm(
p.imap(fx, wav_paths), total=len(wav_paths), unit="utterance"))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Process audio in AiShell3, trim silence according to the alignment "
"files generated by MFA, and normalize volume by peak.")
parser.add_argument(
"--input",
type=str,
default="~/datasets/aishell3/train/wav",
help="path of the original audio folder in aishell3.")
parser.add_argument(
"--output",
type=str,
default="~/datasets/aishell3/train/normalized_wav",
help="path of the folder to save the processed audio files.")
parser.add_argument(
"--alignment",
type=str,
default="~/datasets/aishell3/train/alignment",
help="path of the alignment files.")
args = parser.parse_args()
preprocess_aishell3(args.input, args.output, args.alignment)