ParakeetEricRoss/parakeet/models/transformer_tts/prenet.py

64 lines
2.3 KiB
Python
Raw Normal View History

2020-02-26 21:03:51 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2020-02-11 16:56:28 +08:00
import math
import paddle.fluid.dygraph as dg
import paddle.fluid as fluid
import paddle.fluid.layers as layers
2020-02-26 21:03:51 +08:00
2020-02-11 16:56:28 +08:00
class PreNet(dg.Layer):
def __init__(self, input_size, hidden_size, output_size, dropout_rate=0.2):
super(PreNet, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout_rate = dropout_rate
k = math.sqrt(1 / input_size)
2020-02-26 21:03:51 +08:00
self.linear1 = dg.Linear(
input_size,
hidden_size,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.XavierInitializer()),
bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
low=-k, high=k)))
2020-02-11 16:56:28 +08:00
k = math.sqrt(1 / hidden_size)
2020-02-26 21:03:51 +08:00
self.linear2 = dg.Linear(
hidden_size,
output_size,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.XavierInitializer()),
bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
low=-k, high=k)))
2020-02-11 16:56:28 +08:00
def forward(self, x):
"""
Pre Net before passing through the network.
Args:
x (Variable): The input value.
Shape: (B, T, C), dtype: float32.
2020-02-11 16:56:28 +08:00
Returns:
(Variable), the result after pernet. Shape: (B, T, C),
2020-02-11 16:56:28 +08:00
"""
x = layers.dropout(
layers.relu(self.linear1(x)),
self.dropout_rate,
dropout_implementation='upscale_in_train')
x = layers.dropout(
layers.relu(self.linear2(x)),
self.dropout_rate,
dropout_implementation='upscale_in_train')
2020-02-11 16:56:28 +08:00
return x