ParakeetEricRoss/examples/ge2e/inference.py

141 lines
4.6 KiB
Python
Raw Normal View History

add ge2e and tacotron2_aishell3 example (#107) * hacky thing, add tone support for acoustic model * fix experiments for waveflow and wavenet, only write visual log in rank-0 * use emb add in tacotron2 * 1. remove space from numericalized representation; 2. fix decoder paddign mask's unsqueeze dim. * remove bn in postnet * refactoring code * add an option to normalize volume when loading audio. * add an embedding layer. * 1. change the default min value of LogMagnitude to 1e-5; 2. remove stop logit prediction from tacotron2 model. * WIP: baker * add ge2e * fix lstm speaker encoder * fix lstm speaker encoder * fix speaker encoder and add support for 2 more datasets * simplify visualization code * add a simple strategy to support multispeaker for tacotron. * add vctk example for refactored tacotron * fix indentation * fix class name * fix visualizer * fix root path * fix root path * fix root path * fix typos * fix bugs * fix text log extention name * add example for baker and aishell3 * update experiment and display * format code for tacotron_vctk, add plot_waveform to display * add new trainer * minor fix * add global condition support for tacotron2 * add gst layer * add 2 frontend * fix fmax for example/waveflow * update collate function, data loader not does not convert nested list into numpy array. * WIP: add hifigan * WIP:update hifigan * change stft to use conv1d * add audio datasets * change batch_text_id, batch_spec, batch_wav to include valid lengths in the returned value * change wavenet to use on-the-fly prepeocessing * fix typos * resolve conflict * remove imports that are removed * remove files not included in this release * remove imports to deleted modules * move tacotron2_msp * clean code * fix argument order * fix argument name * clean code for data processing * WIP: add README * add more details to thr README, fix some preprocess scripts * add voice cloning notebook * add an optional to alter the loss and model structure of tacotron2, add an alternative config * add plot_multiple_attentions and update visualization code in transformer_tts * format code * remove tacotron2_msp * update tacotron2 from_pretrained, update setup.py * update tacotron2 * update tacotron_aishell3's README * add images for exampels/tacotron2_aishell3's README * update README for examples/ge2e * add STFT back * add extra_config keys into the default config of tacotron * fix typos and docs * update README and doc * update docstrings for tacotron * update doc * update README * add links to downlaod pretrained models * refine READMEs and clean code * add praatio into requirements for running the experiments * format code with pre-commit * simplify text processing code and update notebook
2021-05-13 17:49:50 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from pathlib import Path
import tqdm
import paddle
import numpy as np
from parakeet.models.lstm_speaker_encoder import LSTMSpeakerEncoder
from audio_processor import SpeakerVerificationPreprocessor
from config import get_cfg_defaults
def embed_utterance(processor, model, fpath_or_wav):
# audio processor
wav = processor.preprocess_wav(fpath_or_wav)
mel_partials = processor.extract_mel_partials(wav)
model.eval()
# speaker encoder
with paddle.no_grad():
mel_partials = paddle.to_tensor(mel_partials)
with paddle.no_grad():
embed = model.embed_utterance(mel_partials)
embed = embed.numpy()
return embed
def _process_utterance(ifpath: Path,
input_dir: Path,
output_dir: Path,
processor: SpeakerVerificationPreprocessor,
model: LSTMSpeakerEncoder):
rel_path = ifpath.relative_to(input_dir)
ofpath = (output_dir / rel_path).with_suffix(".npy")
ofpath.parent.mkdir(parents=True, exist_ok=True)
embed = embed_utterance(processor, model, ifpath)
np.save(ofpath, embed)
def main(config, args):
paddle.set_device(args.device)
# load model
model = LSTMSpeakerEncoder(config.data.n_mels, config.model.num_layers,
config.model.hidden_size,
config.model.embedding_size)
weights_fpath = str(Path(args.checkpoint_path).expanduser())
model_state_dict = paddle.load(weights_fpath + ".pdparams")
model.set_state_dict(model_state_dict)
model.eval()
print(f"Loaded encoder {weights_fpath}")
# create audio processor
c = config.data
processor = SpeakerVerificationPreprocessor(
sampling_rate=c.sampling_rate,
audio_norm_target_dBFS=c.audio_norm_target_dBFS,
vad_window_length=c.vad_window_length,
vad_moving_average_width=c.vad_moving_average_width,
vad_max_silence_length=c.vad_max_silence_length,
mel_window_length=c.mel_window_length,
mel_window_step=c.mel_window_step,
n_mels=c.n_mels,
partial_n_frames=c.partial_n_frames,
min_pad_coverage=c.min_pad_coverage,
partial_overlap_ratio=c.min_pad_coverage, )
# input output preparation
input_dir = Path(args.input).expanduser()
ifpaths = list(input_dir.rglob(args.pattern))
print(f"{len(ifpaths)} utterances in total")
output_dir = Path(args.output).expanduser()
output_dir.mkdir(parents=True, exist_ok=True)
for ifpath in tqdm.tqdm(ifpaths, unit="utterance"):
_process_utterance(ifpath, input_dir, output_dir, processor, model)
if __name__ == "__main__":
config = get_cfg_defaults()
parser = argparse.ArgumentParser(description="compute utterance embed.")
parser.add_argument(
"--config",
metavar="FILE",
help="path of the config file to overwrite to default config with.")
parser.add_argument(
"--input", type=str, help="path of the audio_file folder.")
parser.add_argument(
"--pattern",
type=str,
default="*.wav",
help="pattern to filter audio files.")
parser.add_argument(
"--output",
metavar="OUTPUT_DIR",
help="path to save checkpoint and logs.")
# load from saved checkpoint
parser.add_argument(
"--checkpoint_path", type=str, help="path of the checkpoint to load")
# running
parser.add_argument(
"--device",
type=str,
choices=["cpu", "gpu"],
help="device type to use, cpu and gpu are supported.")
# overwrite extra config and default config
parser.add_argument(
"--opts",
nargs=argparse.REMAINDER,
help="options to overwrite --config file and the default config, passing in KEY VALUE pairs"
)
args = parser.parse_args()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
print(args)
main(config, args)