141 lines
4.6 KiB
Python
141 lines
4.6 KiB
Python
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import argparse
|
||
|
from pathlib import Path
|
||
|
|
||
|
import tqdm
|
||
|
import paddle
|
||
|
import numpy as np
|
||
|
|
||
|
from parakeet.models.lstm_speaker_encoder import LSTMSpeakerEncoder
|
||
|
|
||
|
from audio_processor import SpeakerVerificationPreprocessor
|
||
|
from config import get_cfg_defaults
|
||
|
|
||
|
|
||
|
def embed_utterance(processor, model, fpath_or_wav):
|
||
|
# audio processor
|
||
|
wav = processor.preprocess_wav(fpath_or_wav)
|
||
|
mel_partials = processor.extract_mel_partials(wav)
|
||
|
|
||
|
model.eval()
|
||
|
# speaker encoder
|
||
|
with paddle.no_grad():
|
||
|
mel_partials = paddle.to_tensor(mel_partials)
|
||
|
with paddle.no_grad():
|
||
|
embed = model.embed_utterance(mel_partials)
|
||
|
embed = embed.numpy()
|
||
|
return embed
|
||
|
|
||
|
|
||
|
def _process_utterance(ifpath: Path,
|
||
|
input_dir: Path,
|
||
|
output_dir: Path,
|
||
|
processor: SpeakerVerificationPreprocessor,
|
||
|
model: LSTMSpeakerEncoder):
|
||
|
rel_path = ifpath.relative_to(input_dir)
|
||
|
ofpath = (output_dir / rel_path).with_suffix(".npy")
|
||
|
ofpath.parent.mkdir(parents=True, exist_ok=True)
|
||
|
embed = embed_utterance(processor, model, ifpath)
|
||
|
np.save(ofpath, embed)
|
||
|
|
||
|
|
||
|
def main(config, args):
|
||
|
paddle.set_device(args.device)
|
||
|
|
||
|
# load model
|
||
|
model = LSTMSpeakerEncoder(config.data.n_mels, config.model.num_layers,
|
||
|
config.model.hidden_size,
|
||
|
config.model.embedding_size)
|
||
|
weights_fpath = str(Path(args.checkpoint_path).expanduser())
|
||
|
model_state_dict = paddle.load(weights_fpath + ".pdparams")
|
||
|
model.set_state_dict(model_state_dict)
|
||
|
model.eval()
|
||
|
print(f"Loaded encoder {weights_fpath}")
|
||
|
|
||
|
# create audio processor
|
||
|
c = config.data
|
||
|
processor = SpeakerVerificationPreprocessor(
|
||
|
sampling_rate=c.sampling_rate,
|
||
|
audio_norm_target_dBFS=c.audio_norm_target_dBFS,
|
||
|
vad_window_length=c.vad_window_length,
|
||
|
vad_moving_average_width=c.vad_moving_average_width,
|
||
|
vad_max_silence_length=c.vad_max_silence_length,
|
||
|
mel_window_length=c.mel_window_length,
|
||
|
mel_window_step=c.mel_window_step,
|
||
|
n_mels=c.n_mels,
|
||
|
partial_n_frames=c.partial_n_frames,
|
||
|
min_pad_coverage=c.min_pad_coverage,
|
||
|
partial_overlap_ratio=c.min_pad_coverage, )
|
||
|
|
||
|
# input output preparation
|
||
|
input_dir = Path(args.input).expanduser()
|
||
|
ifpaths = list(input_dir.rglob(args.pattern))
|
||
|
print(f"{len(ifpaths)} utterances in total")
|
||
|
output_dir = Path(args.output).expanduser()
|
||
|
output_dir.mkdir(parents=True, exist_ok=True)
|
||
|
|
||
|
for ifpath in tqdm.tqdm(ifpaths, unit="utterance"):
|
||
|
_process_utterance(ifpath, input_dir, output_dir, processor, model)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
config = get_cfg_defaults()
|
||
|
parser = argparse.ArgumentParser(description="compute utterance embed.")
|
||
|
parser.add_argument(
|
||
|
"--config",
|
||
|
metavar="FILE",
|
||
|
help="path of the config file to overwrite to default config with.")
|
||
|
parser.add_argument(
|
||
|
"--input", type=str, help="path of the audio_file folder.")
|
||
|
parser.add_argument(
|
||
|
"--pattern",
|
||
|
type=str,
|
||
|
default="*.wav",
|
||
|
help="pattern to filter audio files.")
|
||
|
parser.add_argument(
|
||
|
"--output",
|
||
|
metavar="OUTPUT_DIR",
|
||
|
help="path to save checkpoint and logs.")
|
||
|
|
||
|
# load from saved checkpoint
|
||
|
parser.add_argument(
|
||
|
"--checkpoint_path", type=str, help="path of the checkpoint to load")
|
||
|
|
||
|
# running
|
||
|
parser.add_argument(
|
||
|
"--device",
|
||
|
type=str,
|
||
|
choices=["cpu", "gpu"],
|
||
|
help="device type to use, cpu and gpu are supported.")
|
||
|
|
||
|
# overwrite extra config and default config
|
||
|
parser.add_argument(
|
||
|
"--opts",
|
||
|
nargs=argparse.REMAINDER,
|
||
|
help="options to overwrite --config file and the default config, passing in KEY VALUE pairs"
|
||
|
)
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
if args.config:
|
||
|
config.merge_from_file(args.config)
|
||
|
if args.opts:
|
||
|
config.merge_from_list(args.opts)
|
||
|
config.freeze()
|
||
|
print(config)
|
||
|
print(args)
|
||
|
|
||
|
main(config, args)
|