2020-02-26 21:03:51 +08:00
|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
2020-02-11 16:56:28 +08:00
|
|
|
import math
|
|
|
|
import paddle.fluid.dygraph as dg
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
import paddle.fluid.layers as layers
|
|
|
|
|
2020-02-26 21:03:51 +08:00
|
|
|
|
2020-02-11 16:56:28 +08:00
|
|
|
class PreNet(dg.Layer):
|
|
|
|
def __init__(self, input_size, hidden_size, output_size, dropout_rate=0.2):
|
2020-03-09 19:57:49 +08:00
|
|
|
"""Prenet before passing through the network.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
input_size (int): the input channel size.
|
|
|
|
hidden_size (int): the size of hidden layer in network.
|
|
|
|
output_size (int): the output channel size.
|
|
|
|
dropout_rate (float, optional): dropout probability. Defaults to 0.2.
|
|
|
|
"""
|
2020-02-11 16:56:28 +08:00
|
|
|
super(PreNet, self).__init__()
|
|
|
|
self.input_size = input_size
|
|
|
|
self.hidden_size = hidden_size
|
|
|
|
self.output_size = output_size
|
|
|
|
self.dropout_rate = dropout_rate
|
|
|
|
|
2020-03-10 14:49:33 +08:00
|
|
|
k = math.sqrt(1.0 / input_size)
|
2020-02-26 21:03:51 +08:00
|
|
|
self.linear1 = dg.Linear(
|
|
|
|
input_size,
|
|
|
|
hidden_size,
|
|
|
|
param_attr=fluid.ParamAttr(
|
|
|
|
initializer=fluid.initializer.XavierInitializer()),
|
|
|
|
bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
|
|
|
|
low=-k, high=k)))
|
2020-03-10 14:49:33 +08:00
|
|
|
k = math.sqrt(1.0 / hidden_size)
|
2020-02-26 21:03:51 +08:00
|
|
|
self.linear2 = dg.Linear(
|
|
|
|
hidden_size,
|
|
|
|
output_size,
|
|
|
|
param_attr=fluid.ParamAttr(
|
|
|
|
initializer=fluid.initializer.XavierInitializer()),
|
|
|
|
bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
|
|
|
|
low=-k, high=k)))
|
2020-02-11 16:56:28 +08:00
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
"""
|
2020-03-09 19:57:49 +08:00
|
|
|
Prepare network input.
|
2020-02-11 16:56:28 +08:00
|
|
|
|
|
|
|
Args:
|
2020-03-09 19:57:49 +08:00
|
|
|
x (Variable): shape(B, T, C), dtype float32, the input value.
|
|
|
|
|
2020-02-11 16:56:28 +08:00
|
|
|
Returns:
|
2020-03-09 19:57:49 +08:00
|
|
|
output (Variable): shape(B, T, C), the result after pernet.
|
2020-02-11 16:56:28 +08:00
|
|
|
"""
|
2020-03-05 15:22:50 +08:00
|
|
|
x = layers.dropout(
|
|
|
|
layers.relu(self.linear1(x)),
|
|
|
|
self.dropout_rate,
|
|
|
|
dropout_implementation='upscale_in_train')
|
2020-03-09 19:57:49 +08:00
|
|
|
output = layers.dropout(
|
2020-03-05 15:22:50 +08:00
|
|
|
layers.relu(self.linear2(x)),
|
|
|
|
self.dropout_rate,
|
|
|
|
dropout_implementation='upscale_in_train')
|
2020-03-09 19:57:49 +08:00
|
|
|
return output
|