ParakeetEricRoss/parakeet/models/fastspeech/fft_block.py

73 lines
2.5 KiB
Python
Raw Normal View History

2020-02-26 21:03:51 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2020-02-10 15:38:29 +08:00
import numpy as np
import math
import paddle.fluid.dygraph as dg
import paddle.fluid.layers as layers
import paddle.fluid as fluid
from parakeet.modules.multihead_attention import MultiheadAttention
2020-02-11 16:57:30 +08:00
from parakeet.modules.ffn import PositionwiseFeedForward
2020-02-10 15:38:29 +08:00
2020-02-26 21:03:51 +08:00
2020-02-10 15:38:29 +08:00
class FFTBlock(dg.Layer):
2020-02-26 21:03:51 +08:00
def __init__(self,
d_model,
d_inner,
n_head,
d_k,
d_v,
filter_size,
padding,
dropout=0.2):
2020-02-10 15:38:29 +08:00
super(FFTBlock, self).__init__()
2020-02-26 21:03:51 +08:00
self.slf_attn = MultiheadAttention(
d_model,
d_k,
d_v,
num_head=n_head,
is_bias=True,
dropout=dropout,
is_concat=False)
self.pos_ffn = PositionwiseFeedForward(
d_model,
d_inner,
filter_size=filter_size,
padding=padding,
dropout=dropout)
2020-02-10 15:38:29 +08:00
def forward(self, enc_input, non_pad_mask, slf_attn_mask=None):
2020-02-10 15:38:29 +08:00
"""
Feed Forward Transformer block in FastSpeech.
Args:
enc_input (Variable): Shape(B, T, C), dtype: float32. The embedding characters input.
T means the timesteps of input.
non_pad_mask (Variable): Shape(B, T, 1), dtype: int64. The mask of sequence.
slf_attn_mask (Variable): Shape(B, len_q, len_k), dtype: int64. The mask of self attention.
len_q means the sequence length of query, len_k means the sequence length of key.
Returns:
output (Variable), Shape(B, T, C), the output after self-attention & ffn.
slf_attn (Variable), Shape(B * n_head, T, T), the self attention.
"""
2020-02-26 21:03:51 +08:00
output, slf_attn = self.slf_attn(
enc_input, enc_input, enc_input, mask=slf_attn_mask)
2020-02-10 15:38:29 +08:00
output *= non_pad_mask
output = self.pos_ffn(output)
output *= non_pad_mask
2020-02-26 21:03:51 +08:00
return output, slf_attn