80 lines
2.9 KiB
Python
80 lines
2.9 KiB
Python
|
import os
|
||
|
from tensorboardX import SummaryWriter
|
||
|
from collections import OrderedDict
|
||
|
import argparse
|
||
|
from parse import add_config_options_to_parser
|
||
|
from pprint import pprint
|
||
|
from ruamel import yaml
|
||
|
import numpy as np
|
||
|
import paddle.fluid as fluid
|
||
|
import paddle.fluid.dygraph as dg
|
||
|
from parakeet.g2p.en import text_to_sequence
|
||
|
from parakeet import audio
|
||
|
from parakeet.models.fastspeech.fastspeech import FastSpeech
|
||
|
|
||
|
def load_checkpoint(step, model_path):
|
||
|
model_dict, _ = fluid.dygraph.load_dygraph(os.path.join(model_path, step))
|
||
|
new_state_dict = OrderedDict()
|
||
|
for param in model_dict:
|
||
|
if param.startswith('_layers.'):
|
||
|
new_state_dict[param[8:]] = model_dict[param]
|
||
|
else:
|
||
|
new_state_dict[param] = model_dict[param]
|
||
|
return new_state_dict
|
||
|
|
||
|
def synthesis(text_input, args):
|
||
|
place = (fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace())
|
||
|
|
||
|
# tensorboard
|
||
|
if not os.path.exists(args.log_dir):
|
||
|
os.mkdir(args.log_dir)
|
||
|
path = os.path.join(args.log_dir,'synthesis')
|
||
|
|
||
|
with open(args.config_path) as f:
|
||
|
cfg = yaml.load(f, Loader=yaml.Loader)
|
||
|
|
||
|
writer = SummaryWriter(path)
|
||
|
|
||
|
with dg.guard(place):
|
||
|
model = FastSpeech(cfg)
|
||
|
model.set_dict(load_checkpoint(str(args.fastspeech_step), os.path.join(args.checkpoint_path, "fastspeech")))
|
||
|
model.eval()
|
||
|
|
||
|
text = np.asarray(text_to_sequence(text_input))
|
||
|
text = fluid.layers.unsqueeze(dg.to_variable(text),[0])
|
||
|
pos_text = np.arange(1, text.shape[1]+1)
|
||
|
pos_text = fluid.layers.unsqueeze(dg.to_variable(pos_text),[0])
|
||
|
|
||
|
mel_output, mel_output_postnet = model(text, pos_text, alpha=args.alpha)
|
||
|
|
||
|
_ljspeech_processor = audio.AudioProcessor(
|
||
|
sample_rate=cfg['audio']['sr'],
|
||
|
num_mels=cfg['audio']['num_mels'],
|
||
|
min_level_db=cfg['audio']['min_level_db'],
|
||
|
ref_level_db=cfg['audio']['ref_level_db'],
|
||
|
n_fft=cfg['audio']['n_fft'],
|
||
|
win_length= cfg['audio']['win_length'],
|
||
|
hop_length= cfg['audio']['hop_length'],
|
||
|
power=cfg['audio']['power'],
|
||
|
preemphasis=cfg['audio']['preemphasis'],
|
||
|
signal_norm=True,
|
||
|
symmetric_norm=False,
|
||
|
max_norm=1.,
|
||
|
mel_fmin=0,
|
||
|
mel_fmax=None,
|
||
|
clip_norm=True,
|
||
|
griffin_lim_iters=60,
|
||
|
do_trim_silence=False,
|
||
|
sound_norm=False)
|
||
|
|
||
|
mel_output_postnet = fluid.layers.transpose(fluid.layers.squeeze(mel_output_postnet,[0]), [1,0])
|
||
|
wav = _ljspeech_processor.inv_melspectrogram(mel_output_postnet.numpy())
|
||
|
writer.add_audio(text_input, wav, 0, cfg['audio']['sr'])
|
||
|
print("Synthesis completed !!!")
|
||
|
writer.close()
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
parser = argparse.ArgumentParser(description="Train Fastspeech model")
|
||
|
add_config_options_to_parser(parser)
|
||
|
args = parser.parse_args()
|
||
|
synthesis("Transformer model is so fast!", args)
|