ParakeetEricRoss/parakeet/models/transformer_tts/encoderprenet.py

59 lines
2.8 KiB
Python
Raw Normal View History

2020-02-10 15:47:19 +08:00
import math
from parakeet.g2p.text.symbols import symbols
import paddle.fluid.dygraph as dg
import paddle.fluid as fluid
import paddle.fluid.layers as layers
2020-02-11 16:57:30 +08:00
from parakeet.modules.customized import Conv1D
2020-02-10 15:47:19 +08:00
import numpy as np
class EncoderPrenet(dg.Layer):
def __init__(self, embedding_size, num_hidden, use_cudnn=True):
super(EncoderPrenet, self).__init__()
self.embedding_size = embedding_size
self.num_hidden = num_hidden
self.use_cudnn = use_cudnn
self.embedding = dg.Embedding( size = [len(symbols), embedding_size],
padding_idx = None)
self.conv_list = []
2020-02-11 16:57:30 +08:00
k = math.sqrt(1 / embedding_size)
2020-02-12 16:51:32 +08:00
self.conv_list.append(Conv1D(num_channels = embedding_size,
num_filters = num_hidden,
2020-02-10 15:47:19 +08:00
filter_size = 5,
padding = int(np.floor(5/2)),
2020-02-11 16:57:30 +08:00
param_attr = fluid.ParamAttr(initializer=fluid.initializer.XavierInitializer()),
bias_attr = fluid.ParamAttr(initializer=fluid.initializer.Uniform(low=-k, high=k)),
2020-02-12 16:51:32 +08:00
use_cudnn = use_cudnn))
2020-02-11 16:57:30 +08:00
k = math.sqrt(1 / num_hidden)
2020-02-10 15:47:19 +08:00
for _ in range(2):
2020-02-12 16:51:32 +08:00
self.conv_list.append(Conv1D(num_channels = num_hidden,
num_filters = num_hidden,
2020-02-10 15:47:19 +08:00
filter_size = 5,
padding = int(np.floor(5/2)),
2020-02-11 16:57:30 +08:00
param_attr = fluid.ParamAttr(initializer=fluid.initializer.XavierInitializer()),
bias_attr = fluid.ParamAttr(initializer=fluid.initializer.Uniform(low=-k, high=k)),
2020-02-12 16:51:32 +08:00
use_cudnn = use_cudnn))
2020-02-10 15:47:19 +08:00
for i, layer in enumerate(self.conv_list):
self.add_sublayer("conv_list_{}".format(i), layer)
self.batch_norm_list = [dg.BatchNorm(num_hidden,
data_layout='NCHW') for _ in range(3)]
for i, layer in enumerate(self.batch_norm_list):
self.add_sublayer("batch_norm_list_{}".format(i), layer)
2020-02-11 16:57:30 +08:00
k = math.sqrt(1 / num_hidden)
self.projection = dg.Linear(num_hidden, num_hidden,
param_attr=fluid.ParamAttr(initializer = fluid.initializer.XavierInitializer()),
bias_attr=fluid.ParamAttr(initializer = fluid.initializer.Uniform(low=-k, high=k)))
2020-02-10 15:47:19 +08:00
def forward(self, x):
x = self.embedding(x) #(batch_size, seq_len, embending_size)
x = layers.transpose(x,[0,2,1])
for batch_norm, conv in zip(self.batch_norm_list, self.conv_list):
x = layers.dropout(layers.relu(batch_norm(conv(x))), 0.2)
x = layers.transpose(x,[0,2,1]) #(N,T,C)
x = self.projection(x)
return x