Update README.md

This commit is contained in:
zhaokexin01 2020-03-06 08:21:50 +08:00
parent b1c64eecdc
commit 1dacf4caf4
1 changed files with 7 additions and 7 deletions

View File

@ -1,5 +1,5 @@
# Fastspeech
Paddle fluid implementation of Fastspeech, a feed-forward network based on Transformer. The implementation is based on [FastSpeech: Fast, Robust and Controllable Text to Speech](https://arxiv.org/abs/1905.09263).
PaddlePaddle dynamic graph implementation of Fastspeech, a feed-forward network based on Transformer. The implementation is based on [FastSpeech: Fast, Robust and Controllable Text to Speech](https://arxiv.org/abs/1905.09263).
## Dataset
@ -14,7 +14,7 @@ tar xjvf LJSpeech-1.1.tar.bz2
![FastSpeech model architecture](./images/model_architecture.png)
FastSpeech is a feed-forward structure based on Transformer, instead of using the encoder-attention-decoder based architecture. This model extract attention alignments from an encoder-decoder based teacher model for phoneme duration prediction, which is used by a length
FastSpeech is a feed-forward structure based on Transformer, instead of using the encoder-attention-decoder based architecture. This model extracts attention alignments from an encoder-decoder based teacher model for phoneme duration prediction, which is used by a length
regulator to expand the source phoneme sequence to match the length of the target
mel-spectrogram sequence for parallel mel-spectrogram generation. We use the TransformerTTS as teacher model.
The model consists of encoder, decoder and length regulator three parts.
@ -28,7 +28,7 @@ The model consists of encoder, decoder and length regulator three parts.
## Train Transformer
FastSpeech model can train with ``train.py``.
FastSpeech model can be trained with ``train.py``.
```bash
python train.py \
--use_gpu=1 \
@ -38,11 +38,11 @@ python train.py \
--transformer_step=160000 \
--config_path='config/fastspeech.yaml' \
```
or you can run the script file directly.
Or you can run the script file directly.
```bash
sh train.sh
```
If you want to train on multiple GPUs, you must set ``--use_data_parallel=1``, and then start training as follow:
If you want to train on multiple GPUs, you must set ``--use_data_parallel=1``, and then start training as follows:
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3
@ -55,7 +55,7 @@ python -m paddle.distributed.launch --selected_gpus=0,1,2,3 --log_dir ./mylog tr
--config_path='config/fastspeech.yaml' \
```
if you wish to resume from an exists model, please set ``--checkpoint_path`` and ``--fastspeech_step``
If you wish to resume from an existing model, please set ``--checkpoint_path`` and ``--fastspeech_step``.
For more help on arguments:
``python train.py --help``.
@ -70,7 +70,7 @@ python synthesis.py \
--fastspeech_step=112000 \
```
or you can run the script file directly.
Or you can run the script file directly.
```bash
sh synthesis.sh
```