add some profiling to unittesting

This commit is contained in:
chenfeiyu 2021-06-16 14:42:11 +00:00
parent 683cc1d30f
commit 27d3585606
2 changed files with 76 additions and 6 deletions

20
parakeet/utils/profile.py Normal file
View File

@ -0,0 +1,20 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
def synchronize():
place = paddle.fluid.framework._current_expected_place()
paddle.fluid.core._cuda_synchronize(place)

View File

@ -14,13 +14,18 @@
import paddle
import torch
from timer import timer
from parallel_wavegan.layers import upsample, residual_block
from parallel_wavegan.models import parallel_wavegan as pwgan
from parakeet.utils.layer_tools import summary
from parakeet.utils.profile import synchronize
from parakeet.models.parallel_wavegan import ConvInUpsampleNet, ResidualBlock
from parakeet.models.parallel_wavegan import PWGGenerator, PWGDiscriminator, ResidualPWGDiscriminator
paddle.set_device("gpu:0")
device = torch.device("cuda:0")
def test_convin_upsample_net():
net = ConvInUpsampleNet(
@ -33,15 +38,34 @@ def test_convin_upsample_net():
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"negative_slope": 0.2},
freq_axis_kernel_size=3,
aux_context_window=0)
aux_context_window=0).to(device)
summary(net)
for k, v in net2.named_parameters():
print(k, v.shape)
net.state_dict()[k].set_value(v.data.cpu().numpy())
c = paddle.randn([4, 80, 180])
out = net(c)
out2 = net2(torch.as_tensor(c.numpy()))
synchronize()
with timer(unit='s') as t:
out = net(c)
synchronize()
print(f"paddle conv_in_upsample_net forward takes {t.elapse}s.")
with timer(unit='s') as t:
out.sum().backward()
synchronize()
print(f"paddle conv_in_upsample_net backward takes {t.elapse}s.")
c_torch = torch.as_tensor(c.numpy()).to(device)
torch.cuda.synchronize()
with timer(unit='s') as t:
out2 = net2(c_torch)
print(f"torch conv_in_upsample_net forward takes {t.elapse}s.")
with timer(unit='s') as t:
out2.sum().backward()
print(f"torch conv_in_upsample_net backward takes {t.elapse}s.")
print(out.numpy()[0])
print(out2.data.cpu().numpy()[0])
@ -74,7 +98,7 @@ def test_pwg_generator():
"nonlinear_activation_params": {
"negative_slope": 0.2
}
})
}).to(device)
summary(net)
summary(net2)
for k, v in net2.named_parameters():
@ -85,8 +109,34 @@ def test_pwg_generator():
p.set_value(v.data.cpu().numpy())
x = paddle.randn([4, 1, 180 * 256])
c = paddle.randn([4, 80, 180 + 4])
out = net(x, c)
out2 = net2(torch.as_tensor(x.numpy()), torch.as_tensor(c.numpy()))
synchronize()
with timer(unit='s') as t:
out = net(x, c)
synchronize()
print(f"paddle generator forward takes {t.elapse}s.")
synchronize()
with timer(unit='s') as t:
out.sum().backward()
synchronize()
print(f"paddle generator backward takes {t.elapse}s.")
x_torch = torch.as_tensor(x.numpy()).to(device)
c_torch = torch.as_tensor(c.numpy()).to(device)
torch.cuda.synchronize()
with timer(unit='s') as t:
out2 = net2(x_torch, c_torch)
torch.cuda.synchronize()
print(f"torch generator forward takes {t.elapse}s.")
torch.cuda.synchronize()
with timer(unit='s') as t:
out2.sum().backward()
torch.cuda.synchronize()
print(f"torch generator backward takes {t.elapse}s.")
print(out.numpy()[0])
print(out2.data.cpu().numpy()[0])
# print(out.shape)