diff --git a/examples/clarinet/README.md b/examples/clarinet/README.md index 50d8ffb..6046327 100644 --- a/examples/clarinet/README.md +++ b/examples/clarinet/README.md @@ -28,21 +28,18 @@ Train the model using train.py, follow the usage displayed by `python train.py - ```text usage: train.py [-h] [--config CONFIG] [--device DEVICE] [--output OUTPUT] - [--data DATA] [--resume RESUME] [--conditioner CONDITIONER] - [--teacher TEACHER] + [--data DATA] [--resume RESUME] [--wavenet WAVENET] train a clarinet model with LJspeech and a trained wavenet model. optional arguments: - -h, --help show this help message and exit - --config CONFIG path of the config file. - --device DEVICE device to use. - --output OUTPUT path to save student. - --data DATA path of LJspeech dataset. - --resume RESUME checkpoint to load from. - --conditioner CONDITIONER - conditioner checkpoint to use. - --teacher TEACHER teacher checkpoint to use. + -h, --help show this help message and exit + --config CONFIG path of the config file. + --device DEVICE device to use. + --output OUTPUT path to save student. + --data DATA path of LJspeech dataset. + --resume RESUME checkpoint to load from. + --wavenet WAVENET wavenet checkpoint to use. ``` 1. `--config` is the configuration file to use. The provided configurations can be used directly. And you can change some values in the configuration file and train the model with a different config. @@ -57,8 +54,8 @@ optional arguments: ``` 5. `--device` is the device (gpu id) to use for training. `-1` means CPU. -6. `--conditioner` is the path of the checkpoint to load for the `conditioner` part of clarinet. if you do not specify `--resume`, then this must be provided. -7. `--teacher` is the path of the checkpoint to load for the `teacher` part of clarinet. if you do not specify `--resume`, then this must be provided. +6. `--wavenet` is the path of the wavenet checkpoint to load. if you do not specify `--resume`, then this must be provided. + Before you start training a clarinet model, you should have trained a wavenet model with single gaussian as output distribution. Make sure the config for teacher matches that for the trained model.