From 6aac18278e8b0c8c1fa0fd6728991d07e34320bc Mon Sep 17 00:00:00 2001 From: chenfeiyu Date: Fri, 15 May 2020 11:02:31 +0000 Subject: [PATCH] refactor for deep voice 3, update wavenet and clarinet to use enable_dygraph --- examples/clarinet/synthesis.py | 135 ++--- examples/clarinet/train.py | 239 ++++---- examples/deepvoice3/README.md | 24 +- examples/deepvoice3/data.py | 86 ++- examples/deepvoice3/model.py | 164 ++++++ examples/deepvoice3/synthesis.py | 118 +--- examples/deepvoice3/train.py | 401 ++++--------- examples/deepvoice3/utils.py | 540 ++++++++++-------- examples/wavenet/synthesis.py | 91 +-- examples/wavenet/train.py | 164 +++--- parakeet/data/sampler.py | 73 +++ parakeet/models/deepvoice3/__init__.py | 1 + parakeet/models/deepvoice3/loss.py | 110 ++-- .../models/deepvoice3/position_embedding.py | 47 +- parakeet/modules/weight_norm.py | 38 +- setup.py | 3 + 16 files changed, 1201 insertions(+), 1033 deletions(-) create mode 100644 examples/deepvoice3/model.py diff --git a/examples/clarinet/synthesis.py b/examples/clarinet/synthesis.py index ff086bb..32ed860 100644 --- a/examples/clarinet/synthesis.py +++ b/examples/clarinet/synthesis.py @@ -25,6 +25,7 @@ from tensorboardX import SummaryWriter import paddle.fluid.dygraph as dg from paddle import fluid +fluid.require_version('1.8.0') from parakeet.modules.weight_norm import WeightNormWrapper from parakeet.models.wavenet import WaveNet, UpsampleNet @@ -64,6 +65,13 @@ if __name__ == "__main__": with open(args.config, 'rt') as f: config = ruamel.yaml.safe_load(f) + if args.device == -1: + place = fluid.CPUPlace() + else: + place = fluid.CUDAPlace(args.device) + + dg.enable_dygraph(place) + ljspeech_meta = LJSpeechMetaData(args.data) data_config = config["data"] @@ -105,75 +113,68 @@ if __name__ == "__main__": batch_size=1, sampler=SequentialSampler(ljspeech_valid)) - if args.device == -1: - place = fluid.CPUPlace() + # conditioner(upsampling net) + conditioner_config = config["conditioner"] + upsampling_factors = conditioner_config["upsampling_factors"] + upsample_net = UpsampleNet(upscale_factors=upsampling_factors) + freeze(upsample_net) + + residual_channels = teacher_config["residual_channels"] + loss_type = teacher_config["loss_type"] + output_dim = teacher_config["output_dim"] + log_scale_min = teacher_config["log_scale_min"] + assert loss_type == "mog" and output_dim == 3, \ + "the teacher wavenet should be a wavenet with single gaussian output" + + teacher = WaveNet(n_loop, n_layer, residual_channels, output_dim, n_mels, + filter_size, loss_type, log_scale_min) + # load & freeze upsample_net & teacher + freeze(teacher) + + student_config = config["student"] + n_loops = student_config["n_loops"] + n_layers = student_config["n_layers"] + student_residual_channels = student_config["residual_channels"] + student_filter_size = student_config["filter_size"] + student_log_scale_min = student_config["log_scale_min"] + student = ParallelWaveNet(n_loops, n_layers, student_residual_channels, + n_mels, student_filter_size) + + stft_config = config["stft"] + stft = STFT( + n_fft=stft_config["n_fft"], + hop_length=stft_config["hop_length"], + win_length=stft_config["win_length"]) + + lmd = config["loss"]["lmd"] + model = Clarinet(upsample_net, teacher, student, stft, + student_log_scale_min, lmd) + summary(model) + + # load parameters + if args.checkpoint is not None: + # load from args.checkpoint + iteration = io.load_parameters(model, checkpoint_path=args.checkpoint) else: - place = fluid.CUDAPlace(args.device) + # load from "args.output/checkpoints" + checkpoint_dir = os.path.join(args.output, "checkpoints") + iteration = io.load_parameters( + model, checkpoint_dir=checkpoint_dir, iteration=args.iteration) + assert iteration > 0, "A trained checkpoint is needed." - with dg.guard(place): - # conditioner(upsampling net) - conditioner_config = config["conditioner"] - upsampling_factors = conditioner_config["upsampling_factors"] - upsample_net = UpsampleNet(upscale_factors=upsampling_factors) - freeze(upsample_net) + # make generation fast + for sublayer in model.sublayers(): + if isinstance(sublayer, WeightNormWrapper): + sublayer.remove_weight_norm() - residual_channels = teacher_config["residual_channels"] - loss_type = teacher_config["loss_type"] - output_dim = teacher_config["output_dim"] - log_scale_min = teacher_config["log_scale_min"] - assert loss_type == "mog" and output_dim == 3, \ - "the teacher wavenet should be a wavenet with single gaussian output" + # data loader + valid_loader = fluid.io.DataLoader.from_generator( + capacity=10, return_list=True) + valid_loader.set_batch_generator(valid_cargo, place) - teacher = WaveNet(n_loop, n_layer, residual_channels, output_dim, - n_mels, filter_size, loss_type, log_scale_min) - # load & freeze upsample_net & teacher - freeze(teacher) + # the directory to save audio files + synthesis_dir = os.path.join(args.output, "synthesis") + if not os.path.exists(synthesis_dir): + os.makedirs(synthesis_dir) - student_config = config["student"] - n_loops = student_config["n_loops"] - n_layers = student_config["n_layers"] - student_residual_channels = student_config["residual_channels"] - student_filter_size = student_config["filter_size"] - student_log_scale_min = student_config["log_scale_min"] - student = ParallelWaveNet(n_loops, n_layers, student_residual_channels, - n_mels, student_filter_size) - - stft_config = config["stft"] - stft = STFT( - n_fft=stft_config["n_fft"], - hop_length=stft_config["hop_length"], - win_length=stft_config["win_length"]) - - lmd = config["loss"]["lmd"] - model = Clarinet(upsample_net, teacher, student, stft, - student_log_scale_min, lmd) - summary(model) - - # load parameters - if args.checkpoint is not None: - # load from args.checkpoint - iteration = io.load_parameters( - model, checkpoint_path=args.checkpoint) - else: - # load from "args.output/checkpoints" - checkpoint_dir = os.path.join(args.output, "checkpoints") - iteration = io.load_parameters( - model, checkpoint_dir=checkpoint_dir, iteration=args.iteration) - assert iteration > 0, "A trained checkpoint is needed." - - # make generation fast - for sublayer in model.sublayers(): - if isinstance(sublayer, WeightNormWrapper): - sublayer.remove_weight_norm() - - # data loader - valid_loader = fluid.io.DataLoader.from_generator( - capacity=10, return_list=True) - valid_loader.set_batch_generator(valid_cargo, place) - - # the directory to save audio files - synthesis_dir = os.path.join(args.output, "synthesis") - if not os.path.exists(synthesis_dir): - os.makedirs(synthesis_dir) - - eval_model(model, valid_loader, synthesis_dir, iteration, sample_rate) + eval_model(model, valid_loader, synthesis_dir, iteration, sample_rate) diff --git a/examples/clarinet/train.py b/examples/clarinet/train.py index ed55702..fcfbd8d 100644 --- a/examples/clarinet/train.py +++ b/examples/clarinet/train.py @@ -25,10 +25,11 @@ from tensorboardX import SummaryWriter import paddle.fluid.dygraph as dg from paddle import fluid +fluid.require_version('1.8.0') from parakeet.models.wavenet import WaveNet, UpsampleNet from parakeet.models.clarinet import STFT, Clarinet, ParallelWaveNet -from parakeet.data import TransformDataset, SliceDataset, RandomSampler, SequentialSampler, DataCargo +from parakeet.data import TransformDataset, SliceDataset, CacheDataset, RandomSampler, SequentialSampler, DataCargo from parakeet.utils.layer_tools import summary, freeze from parakeet.utils import io @@ -66,6 +67,13 @@ if __name__ == "__main__": with open(args.config, 'rt') as f: config = ruamel.yaml.safe_load(f) + if args.device == -1: + place = fluid.CPUPlace() + else: + place = fluid.CUDAPlace(args.device) + + dg.enable_dygraph(place) + print("Command Line args: ") for k, v in vars(args).items(): print("{}: {}".format(k, v)) @@ -83,8 +91,9 @@ if __name__ == "__main__": ljspeech = TransformDataset(ljspeech_meta, transform) valid_size = data_config["valid_size"] - ljspeech_valid = SliceDataset(ljspeech, 0, valid_size) - ljspeech_train = SliceDataset(ljspeech, valid_size, len(ljspeech)) + ljspeech_valid = CacheDataset(SliceDataset(ljspeech, 0, valid_size)) + ljspeech_train = CacheDataset( + SliceDataset(ljspeech, valid_size, len(ljspeech))) teacher_config = config["teacher"] n_loop = teacher_config["n_loop"] @@ -113,130 +122,122 @@ if __name__ == "__main__": make_output_tree(args.output) - if args.device == -1: - place = fluid.CPUPlace() + # conditioner(upsampling net) + conditioner_config = config["conditioner"] + upsampling_factors = conditioner_config["upsampling_factors"] + upsample_net = UpsampleNet(upscale_factors=upsampling_factors) + freeze(upsample_net) + + residual_channels = teacher_config["residual_channels"] + loss_type = teacher_config["loss_type"] + output_dim = teacher_config["output_dim"] + log_scale_min = teacher_config["log_scale_min"] + assert loss_type == "mog" and output_dim == 3, \ + "the teacher wavenet should be a wavenet with single gaussian output" + + teacher = WaveNet(n_loop, n_layer, residual_channels, output_dim, n_mels, + filter_size, loss_type, log_scale_min) + freeze(teacher) + + student_config = config["student"] + n_loops = student_config["n_loops"] + n_layers = student_config["n_layers"] + student_residual_channels = student_config["residual_channels"] + student_filter_size = student_config["filter_size"] + student_log_scale_min = student_config["log_scale_min"] + student = ParallelWaveNet(n_loops, n_layers, student_residual_channels, + n_mels, student_filter_size) + + stft_config = config["stft"] + stft = STFT( + n_fft=stft_config["n_fft"], + hop_length=stft_config["hop_length"], + win_length=stft_config["win_length"]) + + lmd = config["loss"]["lmd"] + model = Clarinet(upsample_net, teacher, student, stft, + student_log_scale_min, lmd) + summary(model) + + # optim + train_config = config["train"] + learning_rate = train_config["learning_rate"] + anneal_rate = train_config["anneal_rate"] + anneal_interval = train_config["anneal_interval"] + lr_scheduler = dg.ExponentialDecay( + learning_rate, anneal_interval, anneal_rate, staircase=True) + gradiant_max_norm = train_config["gradient_max_norm"] + optim = fluid.optimizer.Adam( + lr_scheduler, + parameter_list=model.parameters(), + grad_clip=fluid.clip.ClipByGlobalNorm(gradiant_max_norm)) + + # train + max_iterations = train_config["max_iterations"] + checkpoint_interval = train_config["checkpoint_interval"] + eval_interval = train_config["eval_interval"] + checkpoint_dir = os.path.join(args.output, "checkpoints") + state_dir = os.path.join(args.output, "states") + log_dir = os.path.join(args.output, "log") + writer = SummaryWriter(log_dir) + + if args.checkpoint is not None: + iteration = io.load_parameters( + model, optim, checkpoint_path=args.checkpoint) else: - place = fluid.CUDAPlace(args.device) + iteration = io.load_parameters( + model, + optim, + checkpoint_dir=checkpoint_dir, + iteration=args.iteration) - with dg.guard(place): - # conditioner(upsampling net) - conditioner_config = config["conditioner"] - upsampling_factors = conditioner_config["upsampling_factors"] - upsample_net = UpsampleNet(upscale_factors=upsampling_factors) - freeze(upsample_net) + if iteration == 0: + assert args.wavenet is not None, "When training afresh, a trained wavenet model should be provided." + load_wavenet(model, args.wavenet) - residual_channels = teacher_config["residual_channels"] - loss_type = teacher_config["loss_type"] - output_dim = teacher_config["output_dim"] - log_scale_min = teacher_config["log_scale_min"] - assert loss_type == "mog" and output_dim == 3, \ - "the teacher wavenet should be a wavenet with single gaussian output" + # loader + train_loader = fluid.io.DataLoader.from_generator( + capacity=10, return_list=True) + train_loader.set_batch_generator(train_cargo, place) - teacher = WaveNet(n_loop, n_layer, residual_channels, output_dim, - n_mels, filter_size, loss_type, log_scale_min) - freeze(teacher) + valid_loader = fluid.io.DataLoader.from_generator( + capacity=10, return_list=True) + valid_loader.set_batch_generator(valid_cargo, place) - student_config = config["student"] - n_loops = student_config["n_loops"] - n_layers = student_config["n_layers"] - student_residual_channels = student_config["residual_channels"] - student_filter_size = student_config["filter_size"] - student_log_scale_min = student_config["log_scale_min"] - student = ParallelWaveNet(n_loops, n_layers, student_residual_channels, - n_mels, student_filter_size) + # training loop + global_step = iteration + 1 + iterator = iter(tqdm(train_loader)) + while global_step <= max_iterations: + try: + batch = next(iterator) + except StopIteration as e: + iterator = iter(tqdm(train_loader)) + batch = next(iterator) - stft_config = config["stft"] - stft = STFT( - n_fft=stft_config["n_fft"], - hop_length=stft_config["hop_length"], - win_length=stft_config["win_length"]) + audios, mels, audio_starts = batch + model.train() + loss_dict = model( + audios, mels, audio_starts, clip_kl=global_step > 500) - lmd = config["loss"]["lmd"] - model = Clarinet(upsample_net, teacher, student, stft, - student_log_scale_min, lmd) - summary(model) + writer.add_scalar("learning_rate", + optim._learning_rate.step().numpy()[0], global_step) + for k, v in loss_dict.items(): + writer.add_scalar("loss/{}".format(k), v.numpy()[0], global_step) - # optim - train_config = config["train"] - learning_rate = train_config["learning_rate"] - anneal_rate = train_config["anneal_rate"] - anneal_interval = train_config["anneal_interval"] - lr_scheduler = dg.ExponentialDecay( - learning_rate, anneal_interval, anneal_rate, staircase=True) - gradiant_max_norm = train_config["gradient_max_norm"] - optim = fluid.optimizer.Adam( - lr_scheduler, - parameter_list=model.parameters(), - grad_clip=fluid.clip.ClipByGlobalNorm(gradiant_max_norm)) + l = loss_dict["loss"] + step_loss = l.numpy()[0] + print("[train] global_step: {} loss: {:<8.6f}".format(global_step, + step_loss)) - # train - max_iterations = train_config["max_iterations"] - checkpoint_interval = train_config["checkpoint_interval"] - eval_interval = train_config["eval_interval"] - checkpoint_dir = os.path.join(args.output, "checkpoints") - state_dir = os.path.join(args.output, "states") - log_dir = os.path.join(args.output, "log") - writer = SummaryWriter(log_dir) + l.backward() + optim.minimize(l) + optim.clear_gradients() - if args.checkpoint is not None: - iteration = io.load_parameters( - model, optim, checkpoint_path=args.checkpoint) - else: - iteration = io.load_parameters( - model, - optim, - checkpoint_dir=checkpoint_dir, - iteration=args.iteration) + if global_step % eval_interval == 0: + # evaluate on valid dataset + eval_model(model, valid_loader, state_dir, global_step, + sample_rate) + if global_step % checkpoint_interval == 0: + io.save_parameters(checkpoint_dir, global_step, model, optim) - if iteration == 0: - assert args.wavenet is not None, "When training afresh, a trained wavenet model should be provided." - load_wavenet(model, args.wavenet) - - # loader - train_loader = fluid.io.DataLoader.from_generator( - capacity=10, return_list=True) - train_loader.set_batch_generator(train_cargo, place) - - valid_loader = fluid.io.DataLoader.from_generator( - capacity=10, return_list=True) - valid_loader.set_batch_generator(valid_cargo, place) - - # training loop - global_step = iteration + 1 - iterator = iter(tqdm(train_loader)) - while global_step <= max_iterations: - try: - batch = next(iterator) - except StopIteration as e: - iterator = iter(tqdm(train_loader)) - batch = next(iterator) - - audios, mels, audio_starts = batch - model.train() - loss_dict = model( - audios, mels, audio_starts, clip_kl=global_step > 500) - - writer.add_scalar("learning_rate", - optim._learning_rate.step().numpy()[0], - global_step) - for k, v in loss_dict.items(): - writer.add_scalar("loss/{}".format(k), - v.numpy()[0], global_step) - - l = loss_dict["loss"] - step_loss = l.numpy()[0] - print("[train] global_step: {} loss: {:<8.6f}".format(global_step, - step_loss)) - - l.backward() - optim.minimize(l) - optim.clear_gradients() - - if global_step % eval_interval == 0: - # evaluate on valid dataset - eval_model(model, valid_loader, state_dir, global_step, - sample_rate) - if global_step % checkpoint_interval == 0: - io.save_parameters(checkpoint_dir, global_step, model, optim) - - global_step += 1 + global_step += 1 diff --git a/examples/deepvoice3/README.md b/examples/deepvoice3/README.md index f1a55df..e379fea 100644 --- a/examples/deepvoice3/README.md +++ b/examples/deepvoice3/README.md @@ -23,6 +23,7 @@ The model consists of an encoder, a decoder and a converter (and a speaker embed ```text ├── data.py data_processing +├── model.py function to create model, criterion and optimizer ├── configs/ (example) configuration files ├── sentences.txt sample sentences ├── synthesis.py script to synthesize waveform from text @@ -34,19 +35,20 @@ The model consists of an encoder, a decoder and a converter (and a speaker embed `train.py` and `synthesis.py` have 3 arguments in common, `--checkpooint`, `iteration` and `output`. 1. `output` is the directory for saving results. -During training, checkpoints are saved in `checkpoints/` in `output` and tensorboard log is save in `log/` in `output`. Other possible outputs are saved in `states/` in `outuput`. -During synthesizing, audio files and other possible outputs are save in `synthesis/` in `output`. +During training, checkpoints are saved in `checkpoints/` in `output` and tensorboard log is save in `log/` in `output`. States for training including alignment plots, spectrogram plots and generated audio files are saved in `states/` in `outuput`. In addition, we periodically evaluate the model with several given sentences, the alignment plots and generated audio files are save in `eval/` in `output`. +During synthesizing, audio files and the alignment plots are save in `synthesis/` in `output`. So after training and synthesizing with the same output directory, the file structure of the output directory looks like this. ```text ├── checkpoints/ # checkpoint directory (including *.pdparams, *.pdopt and a text file `checkpoint` that records the latest checkpoint) -├── states/ # audio files generated at validation and other possible outputs +├── states/ # alignment plots, spectrogram plots and generated wavs at training ├── log/ # tensorboard log -└── synthesis/ # synthesized audio files and other possible outputs +├── eval/ # audio files an alignment plots generated at evaluation during training +└── synthesis/ # synthesized audio files and alignment plots ``` 2. `--checkpoint` and `--iteration` for loading from existing checkpoint. Loading existing checkpoiont follows the following rule: -If `--checkpoint` is provided, the checkpoint specified by `--checkpoint` is loaded. +If `--checkpoint` is provided, the path of the checkpoint specified by `--checkpoint` is loaded. If `--checkpoint` is not provided, we try to load the model specified by `--iteration` from the checkpoint directory. If `--iteration` is not provided, we try to load the latested checkpoint from checkpoint directory. ## Train @@ -100,6 +102,18 @@ python train.py \ experiment ``` +To train the model in a paralle in multiple gpus, you can launch the training script with `paddle.distributed.launch`. For example, to train with gpu `0,1,2,3`, you can use the example script below. Note that for parallel training, devices are specified with `--selected_gpus` passed to `paddle.distributed.launch`. In this case, `--device` passed to `train.py`, if specified, is ignored. + +Example script: + +```bash +python -m paddle.distributed.launch --selected_gpus=0,1,2,3 \ + train.py \ + --config=configs/ljspeech.yaml \ + --data=./LJSpeech-1.1/ \ + experiment +``` + You can monitor training log via tensorboard, using the script below. ```bash diff --git a/examples/deepvoice3/data.py b/examples/deepvoice3/data.py index 4638174..8ab2bd3 100644 --- a/examples/deepvoice3/data.py +++ b/examples/deepvoice3/data.py @@ -17,13 +17,16 @@ import os import csv from pathlib import Path import numpy as np +from paddle import fluid import pandas as pd import librosa -from scipy import signal, io -import six +from scipy import signal + +import paddle.fluid.dygraph as dg -from parakeet.data import DatasetMixin, TransformDataset, FilterDataset from parakeet.g2p.en import text_to_sequence, sequence_to_text +from parakeet.data import DatasetMixin, TransformDataset, FilterDataset, CacheDataset +from parakeet.data import DataCargo, PartialyRandomizedSimilarTimeLengthSampler, SequentialSampler, BucketSampler class LJSpeechMetaData(DatasetMixin): @@ -50,7 +53,7 @@ class LJSpeechMetaData(DatasetMixin): class Transform(object): def __init__(self, - replace_pronounciation_prob=0., + replace_pronunciation_prob=0., sample_rate=22050, preemphasis=.97, n_fft=1024, @@ -63,7 +66,7 @@ class Transform(object): ref_level_db=20, max_norm=0.999, clip_norm=True): - self.replace_pronounciation_prob = replace_pronounciation_prob + self.replace_pronunciation_prob = replace_pronunciation_prob self.sample_rate = sample_rate self.preemphasis = preemphasis @@ -85,7 +88,7 @@ class Transform(object): # text processing mix_grapheme_phonemes = text_to_sequence( - normalized_text, self.replace_pronounciation_prob) + normalized_text, self.replace_pronunciation_prob) text_length = len(mix_grapheme_phonemes) # CAUTION: positions start from 1 speaker_id = None @@ -125,8 +128,8 @@ class Transform(object): # num_frames n_frames = S_mel_norm.shape[-1] # CAUTION: original number of frames - return (mix_grapheme_phonemes, text_length, speaker_id, S_norm, - S_mel_norm, n_frames) + return (mix_grapheme_phonemes, text_length, speaker_id, S_norm.T, + S_mel_norm.T, n_frames) class DataCollector(object): @@ -166,12 +169,12 @@ class DataCollector(object): ), mode="constant")) lin_specs.append( - np.pad(S_norm, ((0, 0), (self._pad_begin, max_frames - - self._pad_begin - num_frames)), + np.pad(S_norm, ((self._pad_begin, max_frames - self._pad_begin + - num_frames), (0, 0)), mode="constant")) mel_specs.append( - np.pad(S_mel_norm, ((0, 0), (self._pad_begin, max_frames - - self._pad_begin - num_frames)), + np.pad(S_mel_norm, ((self._pad_begin, max_frames - + self._pad_begin - num_frames), (0, 0)), mode="constant")) done_flags.append( np.pad(np.zeros((int(np.ceil(num_frames // self._factor)), )), @@ -180,10 +183,10 @@ class DataCollector(object): mode="constant", constant_values=1)) text_sequences = np.array(text_sequences).astype(np.int64) - lin_specs = np.transpose(np.array(lin_specs), - (0, 2, 1)).astype(np.float32) - mel_specs = np.transpose(np.array(mel_specs), - (0, 2, 1)).astype(np.float32) + lin_specs = np.array(lin_specs).astype(np.float32) + mel_specs = np.array(mel_specs).astype(np.float32) + + # downsample here done_flags = np.array(done_flags).astype(np.float32) # text positions @@ -201,3 +204,54 @@ class DataCollector(object): return (text_sequences, text_lengths, text_positions, mel_specs, lin_specs, frames, decoder_positions, done_flags) + + +def make_data_loader(data_root, config): + # construct meta data + meta = LJSpeechMetaData(data_root) + + # filter it! + min_text_length = config["meta_data"]["min_text_length"] + meta = FilterDataset(meta, lambda x: len(x[2]) >= min_text_length) + + # transform meta data into meta data + c = config["transform"] + transform = Transform( + replace_pronunciation_prob=c["replace_pronunciation_prob"], + sample_rate=c["sample_rate"], + preemphasis=c["preemphasis"], + n_fft=c["n_fft"], + win_length=c["win_length"], + hop_length=c["hop_length"], + fmin=c["fmin"], + fmax=c["fmax"], + n_mels=c["n_mels"], + min_level_db=c["min_level_db"], + ref_level_db=c["ref_level_db"], + max_norm=c["max_norm"], + clip_norm=c["clip_norm"]) + ljspeech = CacheDataset(TransformDataset(meta, transform)) + + # use meta data's text length as a sort key for the sampler + batch_size = config["train"]["batch_size"] + text_lengths = [len(example[2]) for example in meta] + sampler = PartialyRandomizedSimilarTimeLengthSampler(text_lengths, + batch_size) + + env = dg.parallel.ParallelEnv() + num_trainers = env.nranks + local_rank = env.local_rank + sampler = BucketSampler( + text_lengths, batch_size, num_trainers=num_trainers, rank=local_rank) + + # some model hyperparameters affect how we process data + model_config = config["model"] + collector = DataCollector( + downsample_factor=model_config["downsample_factor"], + r=model_config["outputs_per_step"]) + ljspeech_loader = DataCargo( + ljspeech, batch_fn=collector, batch_size=batch_size, sampler=sampler) + loader = fluid.io.DataLoader.from_generator(capacity=10, return_list=True) + loader.set_batch_generator( + ljspeech_loader, places=fluid.framework._current_expected_place()) + return loader diff --git a/examples/deepvoice3/model.py b/examples/deepvoice3/model.py new file mode 100644 index 0000000..b434f0e --- /dev/null +++ b/examples/deepvoice3/model.py @@ -0,0 +1,164 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from paddle import fluid +import paddle.fluid.initializer as I +import paddle.fluid.dygraph as dg + +from parakeet.g2p import en +from parakeet.models.deepvoice3 import Encoder, Decoder, Converter, DeepVoice3, TTSLoss, ConvSpec, WindowRange +from parakeet.utils.layer_tools import summary, freeze + + +def make_model(config): + c = config["model"] + # speaker embedding + n_speakers = c["n_speakers"] + speaker_dim = c["speaker_embed_dim"] + if n_speakers > 1: + speaker_embed = dg.Embedding( + (n_speakers, speaker_dim), + param_attr=I.Normal(scale=c["speaker_embedding_weight_std"])) + else: + speaker_embed = None + + # encoder + h = c["encoder_channels"] + k = c["kernel_size"] + encoder_convolutions = ( + ConvSpec(h, k, 1), + ConvSpec(h, k, 3), + ConvSpec(h, k, 9), + ConvSpec(h, k, 27), + ConvSpec(h, k, 1), + ConvSpec(h, k, 3), + ConvSpec(h, k, 9), + ConvSpec(h, k, 27), + ConvSpec(h, k, 1), + ConvSpec(h, k, 3), ) + encoder = Encoder( + n_vocab=en.n_vocab, + embed_dim=c["text_embed_dim"], + n_speakers=n_speakers, + speaker_dim=speaker_dim, + embedding_weight_std=c["embedding_weight_std"], + convolutions=encoder_convolutions, + dropout=c["dropout"]) + if c["freeze_embedding"]: + freeze(encoder.embed) + + # decoder + h = c["decoder_channels"] + k = c["kernel_size"] + prenet_convolutions = (ConvSpec(h, k, 1), ConvSpec(h, k, 3)) + attentive_convolutions = ( + ConvSpec(h, k, 1), + ConvSpec(h, k, 3), + ConvSpec(h, k, 9), + ConvSpec(h, k, 27), + ConvSpec(h, k, 1), ) + attention = [True, False, False, False, True] + force_monotonic_attention = [True, False, False, False, True] + window = WindowRange(c["window_backward"], c["window_ahead"]) + decoder = Decoder( + n_speakers, + speaker_dim, + embed_dim=c["text_embed_dim"], + mel_dim=config["transform"]["n_mels"], + r=c["outputs_per_step"], + max_positions=c["max_positions"], + preattention=prenet_convolutions, + convolutions=attentive_convolutions, + attention=attention, + dropout=c["dropout"], + use_memory_mask=c["use_memory_mask"], + force_monotonic_attention=force_monotonic_attention, + query_position_rate=c["query_position_rate"], + key_position_rate=c["key_position_rate"], + window_range=window, + key_projection=c["key_projection"], + value_projection=c["value_projection"]) + if not c["trainable_positional_encodings"]: + freeze(decoder.embed_keys_positions) + freeze(decoder.embed_query_positions) + + # converter(postnet) + linear_dim = 1 + config["transform"]["n_fft"] // 2 + h = c["converter_channels"] + k = c["kernel_size"] + postnet_convolutions = ( + ConvSpec(h, k, 1), + ConvSpec(h, k, 3), + ConvSpec(2 * h, k, 1), + ConvSpec(2 * h, k, 3), ) + use_decoder_states = c["use_decoder_state_for_postnet_input"] + converter = Converter( + n_speakers, + speaker_dim, + in_channels=decoder.state_dim + if use_decoder_states else config["transform"]["n_mels"], + linear_dim=linear_dim, + time_upsampling=c["downsample_factor"], + convolutions=postnet_convolutions, + dropout=c["dropout"]) + + model = DeepVoice3( + encoder, + decoder, + converter, + speaker_embed, + use_decoder_states=use_decoder_states) + return model + + +def make_criterion(config): + # =========================loss========================= + loss_config = config["loss"] + transform_config = config["transform"] + model_config = config["model"] + + priority_freq = loss_config["priority_freq"] # Hz + sample_rate = transform_config["sample_rate"] + linear_dim = 1 + transform_config["n_fft"] // 2 + priority_bin = int(priority_freq / (0.5 * sample_rate) * linear_dim) + + criterion = TTSLoss( + masked_weight=loss_config["masked_loss_weight"], + priority_bin=priority_bin, + priority_weight=loss_config["priority_freq_weight"], + binary_divergence_weight=loss_config["binary_divergence_weight"], + guided_attention_sigma=loss_config["guided_attention_sigma"], + downsample_factor=model_config["downsample_factor"], + r=model_config["outputs_per_step"]) + return criterion + + +def make_optimizer(model, config): + # =========================lr_scheduler========================= + lr_config = config["lr_scheduler"] + warmup_steps = lr_config["warmup_steps"] + peak_learning_rate = lr_config["peak_learning_rate"] + lr_scheduler = dg.NoamDecay(1 / (warmup_steps * (peak_learning_rate)**2), + warmup_steps) + + # =========================optimizer========================= + optim_config = config["optimizer"] + optim = fluid.optimizer.Adam( + lr_scheduler, + beta1=optim_config["beta1"], + beta2=optim_config["beta2"], + epsilon=optim_config["epsilon"], + parameter_list=model.parameters(), + grad_clip=fluid.clip.GradientClipByGlobalNorm(0.1)) + return optim diff --git a/examples/deepvoice3/synthesis.py b/examples/deepvoice3/synthesis.py index b8fb626..1b0e06e 100644 --- a/examples/deepvoice3/synthesis.py +++ b/examples/deepvoice3/synthesis.py @@ -20,6 +20,7 @@ import numpy as np import soundfile as sf from paddle import fluid +fluid.require_version('1.8.0') import paddle.fluid.layers as F import paddle.fluid.dygraph as dg from tensorboardX import SummaryWriter @@ -29,7 +30,8 @@ from parakeet.modules.weight_norm import WeightNormWrapper from parakeet.utils.layer_tools import summary from parakeet.utils import io -from utils import make_model, eval_model, plot_alignment +from model import make_model +from utils import make_evaluator if __name__ == "__main__": parser = argparse.ArgumentParser( @@ -61,101 +63,29 @@ if __name__ == "__main__": else: place = fluid.CUDAPlace(args.device) - with dg.guard(place): - # =========================model========================= - transform_config = config["transform"] - replace_pronounciation_prob = transform_config[ - "replace_pronunciation_prob"] - sample_rate = transform_config["sample_rate"] - preemphasis = transform_config["preemphasis"] - n_fft = transform_config["n_fft"] - n_mels = transform_config["n_mels"] + dg.enable_dygraph(place) - model_config = config["model"] - downsample_factor = model_config["downsample_factor"] - r = model_config["outputs_per_step"] - n_speakers = model_config["n_speakers"] - speaker_dim = model_config["speaker_embed_dim"] - speaker_embed_std = model_config["speaker_embedding_weight_std"] - n_vocab = en.n_vocab - embed_dim = model_config["text_embed_dim"] - linear_dim = 1 + n_fft // 2 - use_decoder_states = model_config[ - "use_decoder_state_for_postnet_input"] - filter_size = model_config["kernel_size"] - encoder_channels = model_config["encoder_channels"] - decoder_channels = model_config["decoder_channels"] - converter_channels = model_config["converter_channels"] - dropout = model_config["dropout"] - padding_idx = model_config["padding_idx"] - embedding_std = model_config["embedding_weight_std"] - max_positions = model_config["max_positions"] - freeze_embedding = model_config["freeze_embedding"] - trainable_positional_encodings = model_config[ - "trainable_positional_encodings"] - use_memory_mask = model_config["use_memory_mask"] - query_position_rate = model_config["query_position_rate"] - key_position_rate = model_config["key_position_rate"] - window_backward = model_config["window_backward"] - window_ahead = model_config["window_ahead"] - key_projection = model_config["key_projection"] - value_projection = model_config["value_projection"] - dv3 = make_model( - n_speakers, speaker_dim, speaker_embed_std, embed_dim, padding_idx, - embedding_std, max_positions, n_vocab, freeze_embedding, - filter_size, encoder_channels, n_mels, decoder_channels, r, - trainable_positional_encodings, use_memory_mask, - query_position_rate, key_position_rate, window_backward, - window_ahead, key_projection, value_projection, downsample_factor, - linear_dim, use_decoder_states, converter_channels, dropout) + model = make_model(config) + checkpoint_dir = os.path.join(args.output, "checkpoints") + if args.checkpoint is not None: + iteration = io.load_parameters(model, checkpoint_path=args.checkpoint) + else: + iteration = io.load_parameters( + model, checkpoint_dir=checkpoint_dir, iteration=args.iteration) - summary(dv3) + # WARNING: don't forget to remove weight norm to re-compute each wrapped layer's weight + # removing weight norm also speeds up computation + for layer in model.sublayers(): + if isinstance(layer, WeightNormWrapper): + layer.remove_weight_norm() - checkpoint_dir = os.path.join(args.output, "checkpoints") - if args.checkpoint is not None: - iteration = io.load_parameters( - dv3, checkpoint_path=args.checkpoint) - else: - iteration = io.load_parameters( - dv3, checkpoint_dir=checkpoint_dir, iteration=args.iteration) + synthesis_dir = os.path.join(args.output, "synthesis") + if not os.path.exists(synthesis_dir): + os.makedirs(synthesis_dir) - # WARNING: don't forget to remove weight norm to re-compute each wrapped layer's weight - # removing weight norm also speeds up computation - for layer in dv3.sublayers(): - if isinstance(layer, WeightNormWrapper): - layer.remove_weight_norm() + with open(args.text, "rt", encoding="utf-8") as f: + lines = f.readlines() + sentences = [line[:-1] for line in lines] - transform_config = config["transform"] - c = transform_config["replace_pronunciation_prob"] - sample_rate = transform_config["sample_rate"] - min_level_db = transform_config["min_level_db"] - ref_level_db = transform_config["ref_level_db"] - preemphasis = transform_config["preemphasis"] - win_length = transform_config["win_length"] - hop_length = transform_config["hop_length"] - - synthesis_config = config["synthesis"] - power = synthesis_config["power"] - n_iter = synthesis_config["n_iter"] - - synthesis_dir = os.path.join(args.output, "synthesis") - if not os.path.exists(synthesis_dir): - os.makedirs(synthesis_dir) - - with open(args.text, "rt", encoding="utf-8") as f: - lines = f.readlines() - for idx, line in enumerate(lines): - text = line[:-1] - dv3.eval() - wav, attn = eval_model(dv3, text, replace_pronounciation_prob, - min_level_db, ref_level_db, power, - n_iter, win_length, hop_length, - preemphasis) - plot_alignment( - attn, - os.path.join(synthesis_dir, - "test_{}_step_{}.png".format(idx, iteration))) - sf.write( - os.path.join(synthesis_dir, - "test_{}_step{}.wav".format(idx, iteration)), - wav, sample_rate) + evaluator = make_evaluator(config, sentences, synthesis_dir) + evaluator(model, iteration) diff --git a/examples/deepvoice3/train.py b/examples/deepvoice3/train.py index 0d5a54b..74d0ad4 100644 --- a/examples/deepvoice3/train.py +++ b/examples/deepvoice3/train.py @@ -13,57 +13,37 @@ # limitations under the License. from __future__ import division +import time import os import argparse import ruamel.yaml -import numpy as np -import matplotlib -matplotlib.use("agg") -from matplotlib import cm -import matplotlib.pyplot as plt import tqdm -import librosa -from librosa import display -import soundfile as sf from tensorboardX import SummaryWriter - from paddle import fluid +fluid.require_version('1.8.0') import paddle.fluid.layers as F import paddle.fluid.dygraph as dg +from parakeet.utils.io import load_parameters, save_parameters -from parakeet.g2p import en -from parakeet.data import FilterDataset, TransformDataset, FilterDataset -from parakeet.data import DataCargo, PartialyRandomizedSimilarTimeLengthSampler, SequentialSampler -from parakeet.models.deepvoice3 import Encoder, Decoder, Converter, DeepVoice3, ConvSpec -from parakeet.models.deepvoice3.loss import TTSLoss -from parakeet.utils.layer_tools import summary -from parakeet.utils import io - -from data import LJSpeechMetaData, DataCollector, Transform -from utils import make_model, eval_model, save_state, make_output_tree, plot_alignment +from data import make_data_loader +from model import make_model, make_criterion, make_optimizer +from utils import make_output_tree, add_options, get_place, Evaluator, StateSaver, make_evaluator, make_state_saver if __name__ == "__main__": parser = argparse.ArgumentParser( description="Train a Deep Voice 3 model with LJSpeech dataset.") - parser.add_argument("--config", type=str, help="experimrnt config") - parser.add_argument( - "--data", - type=str, - default="/workspace/datasets/LJSpeech-1.1/", - help="The path of the LJSpeech dataset.") - parser.add_argument("--device", type=int, default=-1, help="device to use") - - g = parser.add_mutually_exclusive_group() - g.add_argument("--checkpoint", type=str, help="checkpoint to resume from.") - g.add_argument( - "--iteration", - type=int, - help="the iteration of the checkpoint to load from output directory") - - parser.add_argument( - "output", type=str, default="experiment", help="path to save results") - + add_options(parser) args, _ = parser.parse_known_args() + + # only use args.device when training in single process + # when training with distributed.launch, devices are provided by + # `--selected_gpus` for distributed.launch + env = dg.parallel.ParallelEnv() + device_id = env.dev_id if env.nranks > 1 else args.device + place = get_place(device_id) + # start dygraph + dg.enable_dygraph(place) + with open(args.config, 'rt') as f: config = ruamel.yaml.safe_load(f) @@ -71,267 +51,122 @@ if __name__ == "__main__": for k, v in vars(args).items(): print("{}: {}".format(k, v)) - # =========================dataset========================= - # construct meta data - data_root = args.data - meta = LJSpeechMetaData(data_root) + data_loader = make_data_loader(args.data, config) + model = make_model(config) + if env.nranks > 1: + strategy = dg.parallel.prepare_context() + model = dg.DataParallel(model, strategy) + criterion = make_criterion(config) + optim = make_optimizer(model, config) - # filter it! - min_text_length = config["meta_data"]["min_text_length"] - meta = FilterDataset(meta, lambda x: len(x[2]) >= min_text_length) + # generation + synthesis_config = config["synthesis"] + power = synthesis_config["power"] + n_iter = synthesis_config["n_iter"] - # transform meta data into meta data - transform_config = config["transform"] - replace_pronounciation_prob = transform_config[ - "replace_pronunciation_prob"] - sample_rate = transform_config["sample_rate"] - preemphasis = transform_config["preemphasis"] - n_fft = transform_config["n_fft"] - win_length = transform_config["win_length"] - hop_length = transform_config["hop_length"] - fmin = transform_config["fmin"] - fmax = transform_config["fmax"] - n_mels = transform_config["n_mels"] - min_level_db = transform_config["min_level_db"] - ref_level_db = transform_config["ref_level_db"] - max_norm = transform_config["max_norm"] - clip_norm = transform_config["clip_norm"] - transform = Transform(replace_pronounciation_prob, sample_rate, - preemphasis, n_fft, win_length, hop_length, fmin, - fmax, n_mels, min_level_db, ref_level_db, max_norm, - clip_norm) - ljspeech = TransformDataset(meta, transform) - - # =========================dataiterator========================= - # use meta data's text length as a sort key for the sampler - train_config = config["train"] - batch_size = train_config["batch_size"] - text_lengths = [len(example[2]) for example in meta] - sampler = PartialyRandomizedSimilarTimeLengthSampler(text_lengths, - batch_size) - - # some hyperparameters affect how we process data, so create a data collector! - model_config = config["model"] - downsample_factor = model_config["downsample_factor"] - r = model_config["outputs_per_step"] - collector = DataCollector(downsample_factor=downsample_factor, r=r) - ljspeech_loader = DataCargo( - ljspeech, batch_fn=collector, batch_size=batch_size, sampler=sampler) - - # =========================model========================= - if args.device == -1: - place = fluid.CPUPlace() - else: - place = fluid.CUDAPlace(args.device) - - with dg.guard(place): - # =========================model========================= - n_speakers = model_config["n_speakers"] - speaker_dim = model_config["speaker_embed_dim"] - speaker_embed_std = model_config["speaker_embedding_weight_std"] - n_vocab = en.n_vocab - embed_dim = model_config["text_embed_dim"] - linear_dim = 1 + n_fft // 2 - use_decoder_states = model_config[ - "use_decoder_state_for_postnet_input"] - filter_size = model_config["kernel_size"] - encoder_channels = model_config["encoder_channels"] - decoder_channels = model_config["decoder_channels"] - converter_channels = model_config["converter_channels"] - dropout = model_config["dropout"] - padding_idx = model_config["padding_idx"] - embedding_std = model_config["embedding_weight_std"] - max_positions = model_config["max_positions"] - freeze_embedding = model_config["freeze_embedding"] - trainable_positional_encodings = model_config[ - "trainable_positional_encodings"] - use_memory_mask = model_config["use_memory_mask"] - query_position_rate = model_config["query_position_rate"] - key_position_rate = model_config["key_position_rate"] - window_backward = model_config["window_backward"] - window_ahead = model_config["window_ahead"] - key_projection = model_config["key_projection"] - value_projection = model_config["value_projection"] - dv3 = make_model( - n_speakers, speaker_dim, speaker_embed_std, embed_dim, padding_idx, - embedding_std, max_positions, n_vocab, freeze_embedding, - filter_size, encoder_channels, n_mels, decoder_channels, r, - trainable_positional_encodings, use_memory_mask, - query_position_rate, key_position_rate, window_backward, - window_ahead, key_projection, value_projection, downsample_factor, - linear_dim, use_decoder_states, converter_channels, dropout) - summary(dv3) - - # =========================loss========================= - loss_config = config["loss"] - masked_weight = loss_config["masked_loss_weight"] - priority_freq = loss_config["priority_freq"] # Hz - priority_bin = int(priority_freq / (0.5 * sample_rate) * linear_dim) - priority_freq_weight = loss_config["priority_freq_weight"] - binary_divergence_weight = loss_config["binary_divergence_weight"] - guided_attention_sigma = loss_config["guided_attention_sigma"] - criterion = TTSLoss( - masked_weight=masked_weight, - priority_bin=priority_bin, - priority_weight=priority_freq_weight, - binary_divergence_weight=binary_divergence_weight, - guided_attention_sigma=guided_attention_sigma, - downsample_factor=downsample_factor, - r=r) - - # =========================lr_scheduler========================= - lr_config = config["lr_scheduler"] - warmup_steps = lr_config["warmup_steps"] - peak_learning_rate = lr_config["peak_learning_rate"] - lr_scheduler = dg.NoamDecay( - 1 / (warmup_steps * (peak_learning_rate)**2), warmup_steps) - - # =========================optimizer========================= - optim_config = config["optimizer"] - beta1 = optim_config["beta1"] - beta2 = optim_config["beta2"] - epsilon = optim_config["epsilon"] - optim = fluid.optimizer.Adam( - lr_scheduler, - beta1, - beta2, - epsilon=epsilon, - parameter_list=dv3.parameters(), - grad_clip=fluid.clip.GradientClipByGlobalNorm(0.1)) - - # generation - synthesis_config = config["synthesis"] - power = synthesis_config["power"] - n_iter = synthesis_config["n_iter"] - - # =========================link(dataloader, paddle)========================= - loader = fluid.io.DataLoader.from_generator( - capacity=10, return_list=True) - loader.set_batch_generator(ljspeech_loader, places=place) - - # tensorboard & checkpoint preparation - output_dir = args.output - ckpt_dir = os.path.join(output_dir, "checkpoints") - log_dir = os.path.join(output_dir, "log") - state_dir = os.path.join(output_dir, "states") + # tensorboard & checkpoint preparation + output_dir = args.output + ckpt_dir = os.path.join(output_dir, "checkpoints") + log_dir = os.path.join(output_dir, "log") + state_dir = os.path.join(output_dir, "states") + eval_dir = os.path.join(output_dir, "eval") + if env.local_rank == 0: make_output_tree(output_dir) writer = SummaryWriter(logdir=log_dir) + else: + writer = None + sentences = [ + "Scientists at the CERN laboratory say they have discovered a new particle.", + "There's a way to measure the acute emotional intelligence that has never gone out of style.", + "President Trump met with other leaders at the Group of 20 conference.", + "Generative adversarial network or variational auto-encoder.", + "Please call Stella.", + "Some have accepted this as a miracle without any physical explanation.", + ] + evaluator = make_evaluator(config, sentences, eval_dir, writer) + state_saver = make_state_saver(config, state_dir, writer) - # load parameters and optimizer, and opdate iterations done sofar - if args.checkpoint is not None: - iteration = io.load_parameters( - dv3, optim, checkpoint_path=args.checkpoint) + # load parameters and optimizer, and opdate iterations done sofar + if args.checkpoint is not None: + iteration = load_parameters( + model, optim, checkpoint_path=args.checkpoint) + else: + iteration = load_parameters( + model, optim, checkpoint_dir=ckpt_dir, iteration=args.iteration) + + # =========================train========================= + train_config = config["train"] + max_iter = train_config["max_iteration"] + snap_interval = train_config["snap_interval"] + save_interval = train_config["save_interval"] + eval_interval = train_config["eval_interval"] + + global_step = iteration + 1 + iterator = iter(tqdm.tqdm(data_loader)) + downsample_factor = config["model"]["downsample_factor"] + while global_step <= max_iter: + try: + batch = next(iterator) + except StopIteration as e: + iterator = iter(tqdm.tqdm(data_loader)) + batch = next(iterator) + + model.train() + (text_sequences, text_lengths, text_positions, mel_specs, lin_specs, + frames, decoder_positions, done_flags) = batch + downsampled_mel_specs = F.strided_slice( + mel_specs, + axes=[1], + starts=[0], + ends=[mel_specs.shape[1]], + strides=[downsample_factor]) + outputs = model( + text_sequences, + text_positions, + text_lengths, + None, + downsampled_mel_specs, + decoder_positions, ) + # mel_outputs, linear_outputs, alignments, done + inputs = (downsampled_mel_specs, lin_specs, done_flags, text_lengths, + frames) + losses = criterion(outputs, inputs) + + l = losses["loss"] + if env.nranks > 1: + l = model.scale_loss(l) + l.backward() + model.apply_collective_grads() else: - iteration = io.load_parameters( - dv3, optim, checkpoint_dir=ckpt_dir, iteration=args.iteration) - - # =========================train========================= - max_iter = train_config["max_iteration"] - snap_interval = train_config["snap_interval"] - save_interval = train_config["save_interval"] - eval_interval = train_config["eval_interval"] - - global_step = iteration + 1 - iterator = iter(tqdm.tqdm(loader)) - while global_step <= max_iter: - try: - batch = next(iterator) - except StopIteration as e: - iterator = iter(tqdm.tqdm(loader)) - batch = next(iterator) - - dv3.train() - (text_sequences, text_lengths, text_positions, mel_specs, - lin_specs, frames, decoder_positions, done_flags) = batch - downsampled_mel_specs = F.strided_slice( - mel_specs, - axes=[1], - starts=[0], - ends=[mel_specs.shape[1]], - strides=[downsample_factor]) - mel_outputs, linear_outputs, alignments, done = dv3( - text_sequences, text_positions, text_lengths, None, - downsampled_mel_specs, decoder_positions) - - losses = criterion(mel_outputs, linear_outputs, done, alignments, - downsampled_mel_specs, lin_specs, done_flags, - text_lengths, frames) - l = losses["loss"] l.backward() - # record learning rate before updating + # record learning rate before updating + if env.local_rank == 0: writer.add_scalar("learning_rate", optim._learning_rate.step().numpy(), global_step) - optim.minimize(l) - optim.clear_gradients() + optim.minimize(l) + optim.clear_gradients() - # ==================all kinds of tedious things================= - # record step loss into tensorboard - step_loss = { - k: v.numpy()[0] - for k, v in losses.items() if v is not None - } - tqdm.tqdm.write("global_step: {}\tloss: {}".format( + # record step losses + step_loss = {k: v.numpy()[0] for k, v in losses.items()} + + if env.local_rank == 0: + tqdm.tqdm.write("[Train] global_step: {}\tloss: {}".format( global_step, step_loss["loss"])) for k, v in step_loss.items(): writer.add_scalar(k, v, global_step) - # train state saving, the first sentence in the batch - if global_step % snap_interval == 0: - save_state( - state_dir, - writer, - global_step, - mel_input=downsampled_mel_specs, - mel_output=mel_outputs, - lin_input=lin_specs, - lin_output=linear_outputs, - alignments=alignments, - win_length=win_length, - hop_length=hop_length, - min_level_db=min_level_db, - ref_level_db=ref_level_db, - power=power, - n_iter=n_iter, - preemphasis=preemphasis, - sample_rate=sample_rate) + # train state saving, the first sentence in the batch + if env.local_rank == 0 and global_step % snap_interval == 0: + input_specs = (mel_specs, lin_specs) + state_saver(outputs, input_specs, global_step) - # evaluation - if global_step % eval_interval == 0: - sentences = [ - "Scientists at the CERN laboratory say they have discovered a new particle.", - "There's a way to measure the acute emotional intelligence that has never gone out of style.", - "President Trump met with other leaders at the Group of 20 conference.", - "Generative adversarial network or variational auto-encoder.", - "Please call Stella.", - "Some have accepted this as a miracle without any physical explanation.", - ] - for idx, sent in enumerate(sentences): - wav, attn = eval_model( - dv3, sent, replace_pronounciation_prob, min_level_db, - ref_level_db, power, n_iter, win_length, hop_length, - preemphasis) - wav_path = os.path.join( - state_dir, "waveform", - "eval_sample_{:09d}.wav".format(global_step)) - sf.write(wav_path, wav, sample_rate) - writer.add_audio( - "eval_sample_{}".format(idx), - wav, - global_step, - sample_rate=sample_rate) - attn_path = os.path.join( - state_dir, "alignments", - "eval_sample_attn_{:09d}.png".format(global_step)) - plot_alignment(attn, attn_path) - writer.add_image( - "eval_sample_attn{}".format(idx), - cm.viridis(attn), - global_step, - dataformats="HWC") + # evaluation + if env.local_rank == 0 and global_step % eval_interval == 0: + evaluator(model, global_step) - # save checkpoint - if global_step % save_interval == 0: - io.save_parameters(ckpt_dir, global_step, dv3, optim) + # save checkpoint + if env.local_rank == 0 and global_step % save_interval == 0: + save_parameters(ckpt_dir, global_step, model, optim) - global_step += 1 + global_step += 1 diff --git a/examples/deepvoice3/utils.py b/examples/deepvoice3/utils.py index 42b8db8..a0e8c7d 100644 --- a/examples/deepvoice3/utils.py +++ b/examples/deepvoice3/utils.py @@ -15,6 +15,8 @@ from __future__ import division import os import numpy as np +import matplotlib +matplotlib.use("agg") from matplotlib import cm import matplotlib.pyplot as plt import librosa @@ -24,132 +26,302 @@ import soundfile as sf from paddle import fluid import paddle.fluid.dygraph as dg -import paddle.fluid.initializer as I - from parakeet.g2p import en -from parakeet.models.deepvoice3.encoder import ConvSpec -from parakeet.models.deepvoice3 import Encoder, Decoder, Converter, DeepVoice3, WindowRange -from parakeet.utils.layer_tools import freeze -@fluid.framework.dygraph_only -def make_model(n_speakers, speaker_dim, speaker_embed_std, embed_dim, - padding_idx, embedding_std, max_positions, n_vocab, - freeze_embedding, filter_size, encoder_channels, mel_dim, - decoder_channels, r, trainable_positional_encodings, - use_memory_mask, query_position_rate, key_position_rate, - window_behind, window_ahead, key_projection, value_projection, - downsample_factor, linear_dim, use_decoder_states, - converter_channels, dropout): - """just a simple function to create a deepvoice 3 model""" - if n_speakers > 1: - spe = dg.Embedding( - (n_speakers, speaker_dim), - param_attr=I.Normal(scale=speaker_embed_std)) +def get_place(device_id): + """get place from device_id, -1 stands for CPU""" + if device_id == -1: + place = fluid.CPUPlace() else: - spe = None - - h = encoder_channels - k = filter_size - encoder_convolutions = ( - ConvSpec(h, k, 1), - ConvSpec(h, k, 3), - ConvSpec(h, k, 9), - ConvSpec(h, k, 27), - ConvSpec(h, k, 1), - ConvSpec(h, k, 3), - ConvSpec(h, k, 9), - ConvSpec(h, k, 27), - ConvSpec(h, k, 1), - ConvSpec(h, k, 3), ) - enc = Encoder( - n_vocab, - embed_dim, - n_speakers, - speaker_dim, - padding_idx=None, - embedding_weight_std=embedding_std, - convolutions=encoder_convolutions, - dropout=dropout) - if freeze_embedding: - freeze(enc.embed) - - h = decoder_channels - prenet_convolutions = (ConvSpec(h, k, 1), ConvSpec(h, k, 3)) - attentive_convolutions = ( - ConvSpec(h, k, 1), - ConvSpec(h, k, 3), - ConvSpec(h, k, 9), - ConvSpec(h, k, 27), - ConvSpec(h, k, 1), ) - attention = [True, False, False, False, True] - force_monotonic_attention = [True, False, False, False, True] - dec = Decoder( - n_speakers, - speaker_dim, - embed_dim, - mel_dim, - r=r, - max_positions=max_positions, - preattention=prenet_convolutions, - convolutions=attentive_convolutions, - attention=attention, - dropout=dropout, - use_memory_mask=use_memory_mask, - force_monotonic_attention=force_monotonic_attention, - query_position_rate=query_position_rate, - key_position_rate=key_position_rate, - window_range=WindowRange(window_behind, window_ahead), - key_projection=key_projection, - value_projection=value_projection) - if not trainable_positional_encodings: - freeze(dec.embed_keys_positions) - freeze(dec.embed_query_positions) - - h = converter_channels - postnet_convolutions = ( - ConvSpec(h, k, 1), - ConvSpec(h, k, 3), - ConvSpec(2 * h, k, 1), - ConvSpec(2 * h, k, 3), ) - cvt = Converter( - n_speakers, - speaker_dim, - dec.state_dim if use_decoder_states else mel_dim, - linear_dim, - time_upsampling=downsample_factor, - convolutions=postnet_convolutions, - dropout=dropout) - dv3 = DeepVoice3(enc, dec, cvt, spe, use_decoder_states) - return dv3 + place = fluid.CUDAPlace(device_id) + return place -@fluid.framework.dygraph_only -def eval_model(model, text, replace_pronounciation_prob, min_level_db, - ref_level_db, power, n_iter, win_length, hop_length, - preemphasis): - """generate waveform from text using a deepvoice 3 model""" - text = np.array( - en.text_to_sequence( - text, p=replace_pronounciation_prob), - dtype=np.int64) - length = len(text) - print("text sequence's length: {}".format(length)) - text_positions = np.arange(1, 1 + length) +def add_options(parser): + parser.add_argument("--config", type=str, help="experimrnt config") + parser.add_argument( + "--data", + type=str, + default="/workspace/datasets/LJSpeech-1.1/", + help="The path of the LJSpeech dataset.") + parser.add_argument("--device", type=int, default=-1, help="device to use") - text = np.expand_dims(text, 0) - text_positions = np.expand_dims(text_positions, 0) - model.eval() - mel_outputs, linear_outputs, alignments, done = model.transduce( - dg.to_variable(text), dg.to_variable(text_positions)) + g = parser.add_mutually_exclusive_group() + g.add_argument("--checkpoint", type=str, help="checkpoint to resume from.") + g.add_argument( + "--iteration", + type=int, + help="the iteration of the checkpoint to load from output directory") - linear_outputs_np = linear_outputs.numpy()[0].T # (C, T) - wav = spec_to_waveform(linear_outputs_np, min_level_db, ref_level_db, - power, n_iter, win_length, hop_length, preemphasis) - alignments_np = alignments.numpy()[0] # batch_size = 1 - print("linear_outputs's shape: ", linear_outputs_np.shape) - print("alignmnets' shape:", alignments.shape) - return wav, alignments_np + parser.add_argument( + "output", type=str, default="experiment", help="path to save results") + + +def make_evaluator(config, text_sequences, output_dir, writer=None): + c = config["transform"] + p_replace = c["replace_pronunciation_prob"] + sample_rate = c["sample_rate"] + preemphasis = c["preemphasis"] + win_length = c["win_length"] + hop_length = c["hop_length"] + min_level_db = c["min_level_db"] + ref_level_db = c["ref_level_db"] + + synthesis_config = config["synthesis"] + power = synthesis_config["power"] + n_iter = synthesis_config["n_iter"] + + return Evaluator( + text_sequences, + p_replace, + sample_rate, + preemphasis, + win_length, + hop_length, + min_level_db, + ref_level_db, + power, + n_iter, + output_dir=output_dir, + writer=writer) + + +class Evaluator(object): + def __init__(self, + text_sequences, + p_replace, + sample_rate, + preemphasis, + win_length, + hop_length, + min_level_db, + ref_level_db, + power, + n_iter, + output_dir, + writer=None): + self.text_sequences = text_sequences + self.output_dir = output_dir + self.writer = writer + + self.p_replace = p_replace + self.sample_rate = sample_rate + self.preemphasis = preemphasis + self.win_length = win_length + self.hop_length = hop_length + self.min_level_db = min_level_db + self.ref_level_db = ref_level_db + + self.power = power + self.n_iter = n_iter + + def process_a_sentence(self, model, text): + text = np.array( + en.text_to_sequence( + text, p=self.p_replace), dtype=np.int64) + length = len(text) + text_positions = np.arange(1, 1 + length) + text = np.expand_dims(text, 0) + text_positions = np.expand_dims(text_positions, 0) + + model.eval() + if isinstance(model, dg.DataParallel): + _model = model._layers + else: + _model = model + mel_outputs, linear_outputs, alignments, done = _model.transduce( + dg.to_variable(text), dg.to_variable(text_positions)) + + linear_outputs_np = linear_outputs.numpy()[0].T # (C, T) + + wav = spec_to_waveform(linear_outputs_np, self.min_level_db, + self.ref_level_db, self.power, self.n_iter, + self.win_length, self.hop_length, + self.preemphasis) + alignments_np = alignments.numpy()[0] # batch_size = 1 + return wav, alignments_np + + def __call__(self, model, iteration): + writer = self.writer + for i, seq in enumerate(self.text_sequences): + print("[Eval] synthesizing sentence {}".format(i)) + wav, alignments_np = self.process_a_sentence(model, seq) + + wav_path = os.path.join( + self.output_dir, + "eval_sample_{}_step_{:09d}.wav".format(i, iteration)) + sf.write(wav_path, wav, self.sample_rate) + if writer is not None: + writer.add_audio( + "eval_sample_{}".format(i), + wav, + iteration, + sample_rate=self.sample_rate) + attn_path = os.path.join( + self.output_dir, + "eval_sample_{}_step_{:09d}.png".format(i, iteration)) + plot_alignment(alignments_np, attn_path) + if writer is not None: + writer.add_image( + "eval_sample_attn_{}".format(i), + cm.viridis(alignments_np), + iteration, + dataformats="HWC") + + +def make_state_saver(config, output_dir, writer=None): + c = config["transform"] + p_replace = c["replace_pronunciation_prob"] + sample_rate = c["sample_rate"] + preemphasis = c["preemphasis"] + win_length = c["win_length"] + hop_length = c["hop_length"] + min_level_db = c["min_level_db"] + ref_level_db = c["ref_level_db"] + + synthesis_config = config["synthesis"] + power = synthesis_config["power"] + n_iter = synthesis_config["n_iter"] + + return StateSaver(p_replace, sample_rate, preemphasis, win_length, + hop_length, min_level_db, ref_level_db, power, n_iter, + output_dir, writer) + + +class StateSaver(object): + def __init__(self, + p_replace, + sample_rate, + preemphasis, + win_length, + hop_length, + min_level_db, + ref_level_db, + power, + n_iter, + output_dir, + writer=None): + self.output_dir = output_dir + self.writer = writer + + self.p_replace = p_replace + self.sample_rate = sample_rate + self.preemphasis = preemphasis + self.win_length = win_length + self.hop_length = hop_length + self.min_level_db = min_level_db + self.ref_level_db = ref_level_db + + self.power = power + self.n_iter = n_iter + + def __call__(self, outputs, inputs, iteration): + mel_output, lin_output, alignments, done_output = outputs + mel_input, lin_input = inputs + writer = self.writer + + # mel spectrogram + mel_input = mel_input[0].numpy().T + mel_output = mel_output[0].numpy().T + + path = os.path.join(self.output_dir, "mel_spec") + plt.figure(figsize=(10, 3)) + display.specshow(mel_input) + plt.colorbar() + plt.title("mel_input") + plt.savefig( + os.path.join(path, "target_mel_spec_step_{:09d}.png".format( + iteration))) + plt.close() + + if writer is not None: + writer.add_image( + "target/mel_spec", + cm.viridis(mel_input), + iteration, + dataformats="HWC") + + plt.figure(figsize=(10, 3)) + display.specshow(mel_output) + plt.colorbar() + plt.title("mel_output") + plt.savefig( + os.path.join(path, "predicted_mel_spec_step_{:09d}.png".format( + iteration))) + plt.close() + + if writer is not None: + writer.add_image( + "predicted/mel_spec", + cm.viridis(mel_output), + iteration, + dataformats="HWC") + + # linear spectrogram + lin_input = lin_input[0].numpy().T + lin_output = lin_output[0].numpy().T + path = os.path.join(self.output_dir, "lin_spec") + + plt.figure(figsize=(10, 3)) + display.specshow(lin_input) + plt.colorbar() + plt.title("mel_input") + plt.savefig( + os.path.join(path, "target_lin_spec_step_{:09d}.png".format( + iteration))) + plt.close() + + if writer is not None: + writer.add_image( + "target/lin_spec", + cm.viridis(lin_input), + iteration, + dataformats="HWC") + + plt.figure(figsize=(10, 3)) + display.specshow(lin_output) + plt.colorbar() + plt.title("mel_input") + plt.savefig( + os.path.join(path, "predicted_lin_spec_step_{:09d}.png".format( + iteration))) + plt.close() + + if writer is not None: + writer.add_image( + "predicted/lin_spec", + cm.viridis(lin_output), + iteration, + dataformats="HWC") + + # alignment + path = os.path.join(self.output_dir, "alignments") + alignments = alignments[:, 0, :, :].numpy() + for idx, attn_layer in enumerate(alignments): + save_path = os.path.join( + path, "train_attn_layer_{}_step_{}.png".format(idx, iteration)) + plot_alignment(attn_layer, save_path) + + if writer is not None: + writer.add_image( + "train_attn/layer_{}".format(idx), + cm.viridis(attn_layer), + iteration, + dataformats="HWC") + + # synthesize waveform + wav = spec_to_waveform( + lin_output, self.min_level_db, self.ref_level_db, self.power, + self.n_iter, self.win_length, self.hop_length, self.preemphasis) + path = os.path.join(self.output_dir, "waveform") + save_path = os.path.join( + path, "train_sample_step_{:09d}.wav".format(iteration)) + sf.write(save_path, wav, self.sample_rate) + + if writer is not None: + writer.add_audio( + "train_sample", wav, iteration, sample_rate=self.sample_rate) def spec_to_waveform(spec, min_level_db, ref_level_db, power, n_iter, @@ -168,6 +340,7 @@ def spec_to_waveform(spec, min_level_db, ref_level_db, power, n_iter, win_length=win_length) if preemphasis > 0: wav = signal.lfilter([1.], [1., -preemphasis], wav) + wav = np.clip(wav, -1.0, 1.0) return wav @@ -175,9 +348,9 @@ def make_output_tree(output_dir): print("creating output tree: {}".format(output_dir)) ckpt_dir = os.path.join(output_dir, "checkpoints") state_dir = os.path.join(output_dir, "states") - log_dir = os.path.join(output_dir, "log") + eval_dir = os.path.join(output_dir, "eval") - for x in [ckpt_dir, state_dir]: + for x in [ckpt_dir, state_dir, eval_dir]: if not os.path.exists(x): os.makedirs(x) for x in ["alignments", "waveform", "lin_spec", "mel_spec"]: @@ -199,130 +372,3 @@ def plot_alignment(alignment, path): plt.ylabel('Decoder timestep') plt.savefig(path) plt.close() - - -def save_state(save_dir, - writer, - global_step, - mel_input=None, - mel_output=None, - lin_input=None, - lin_output=None, - alignments=None, - win_length=1024, - hop_length=256, - min_level_db=-100, - ref_level_db=20, - power=1.4, - n_iter=32, - preemphasis=0.97, - sample_rate=22050): - """Save training intermediate results. Save states for the first sentence in the batch, including - mel_spec(predicted, target), lin_spec(predicted, target), attn, waveform. - - Args: - save_dir (str): directory to save results. - writer (SummaryWriter): tensorboardX summary writer - global_step (int): global step. - mel_input (Variable, optional): Defaults to None. Shape(B, T_mel, C_mel) - mel_output (Variable, optional): Defaults to None. Shape(B, T_mel, C_mel) - lin_input (Variable, optional): Defaults to None. Shape(B, T_lin, C_lin) - lin_output (Variable, optional): Defaults to None. Shape(B, T_lin, C_lin) - alignments (Variable, optional): Defaults to None. Shape(N, B, T_dec, C_enc) - wav ([type], optional): Defaults to None. [description] - """ - - if mel_input is not None and mel_output is not None: - mel_input = mel_input[0].numpy().T - mel_output = mel_output[0].numpy().T - - path = os.path.join(save_dir, "mel_spec") - plt.figure(figsize=(10, 3)) - display.specshow(mel_input) - plt.colorbar() - plt.title("mel_input") - plt.savefig( - os.path.join(path, "target_mel_spec_step{:09d}.png".format( - global_step))) - plt.close() - - writer.add_image( - "target/mel_spec", - cm.viridis(mel_input), - global_step, - dataformats="HWC") - - plt.figure(figsize=(10, 3)) - display.specshow(mel_output) - plt.colorbar() - plt.title("mel_output") - plt.savefig( - os.path.join(path, "predicted_mel_spec_step{:09d}.png".format( - global_step))) - plt.close() - - writer.add_image( - "predicted/mel_spec", - cm.viridis(mel_output), - global_step, - dataformats="HWC") - - if lin_input is not None and lin_output is not None: - lin_input = lin_input[0].numpy().T - lin_output = lin_output[0].numpy().T - path = os.path.join(save_dir, "lin_spec") - - plt.figure(figsize=(10, 3)) - display.specshow(lin_input) - plt.colorbar() - plt.title("mel_input") - plt.savefig( - os.path.join(path, "target_lin_spec_step{:09d}.png".format( - global_step))) - plt.close() - - writer.add_image( - "target/lin_spec", - cm.viridis(lin_input), - global_step, - dataformats="HWC") - - plt.figure(figsize=(10, 3)) - display.specshow(lin_output) - plt.colorbar() - plt.title("mel_input") - plt.savefig( - os.path.join(path, "predicted_lin_spec_step{:09d}.png".format( - global_step))) - plt.close() - - writer.add_image( - "predicted/lin_spec", - cm.viridis(lin_output), - global_step, - dataformats="HWC") - - if alignments is not None and len(alignments.shape) == 4: - path = os.path.join(save_dir, "alignments") - alignments = alignments[:, 0, :, :].numpy() - for idx, attn_layer in enumerate(alignments): - save_path = os.path.join( - path, - "train_attn_layer_{}_step_{}.png".format(idx, global_step)) - plot_alignment(attn_layer, save_path) - - writer.add_image( - "train_attn/layer_{}".format(idx), - cm.viridis(attn_layer), - global_step, - dataformats="HWC") - - if lin_output is not None: - wav = spec_to_waveform(lin_output, min_level_db, ref_level_db, power, - n_iter, win_length, hop_length, preemphasis) - path = os.path.join(save_dir, "waveform") - save_path = os.path.join( - path, "train_sample_step_{:09d}.wav".format(global_step)) - sf.write(save_path, wav, sample_rate) - writer.add_audio( - "train_sample", wav, global_step, sample_rate=sample_rate) diff --git a/examples/wavenet/synthesis.py b/examples/wavenet/synthesis.py index 65c81dd..3dc9f80 100644 --- a/examples/wavenet/synthesis.py +++ b/examples/wavenet/synthesis.py @@ -19,6 +19,7 @@ import argparse from tqdm import tqdm from tensorboardX import SummaryWriter from paddle import fluid +fluid.require_version('1.8.0') import paddle.fluid.dygraph as dg from parakeet.modules.weight_norm import WeightNormWrapper @@ -55,6 +56,13 @@ if __name__ == "__main__": with open(args.config, 'rt') as f: config = ruamel.yaml.safe_load(f) + if args.device == -1: + place = fluid.CPUPlace() + else: + place = fluid.CUDAPlace(args.device) + + dg.enable_dygraph(place) + ljspeech_meta = LJSpeechMetaData(args.data) data_config = config["data"] @@ -99,54 +107,47 @@ if __name__ == "__main__": if not os.path.exists(args.output): os.makedirs(args.output) - if args.device == -1: - place = fluid.CPUPlace() + model_config = config["model"] + upsampling_factors = model_config["upsampling_factors"] + encoder = UpsampleNet(upsampling_factors) + + n_loop = model_config["n_loop"] + n_layer = model_config["n_layer"] + residual_channels = model_config["residual_channels"] + output_dim = model_config["output_dim"] + loss_type = model_config["loss_type"] + log_scale_min = model_config["log_scale_min"] + decoder = WaveNet(n_loop, n_layer, residual_channels, output_dim, n_mels, + filter_size, loss_type, log_scale_min) + + model = ConditionalWavenet(encoder, decoder) + summary(model) + + # load model parameters + checkpoint_dir = os.path.join(args.output, "checkpoints") + if args.checkpoint: + iteration = io.load_parameters(model, checkpoint_path=args.checkpoint) else: - place = fluid.CUDAPlace(args.device) + iteration = io.load_parameters( + model, checkpoint_dir=checkpoint_dir, iteration=args.iteration) + assert iteration > 0, "A trained model is needed." - with dg.guard(place): - model_config = config["model"] - upsampling_factors = model_config["upsampling_factors"] - encoder = UpsampleNet(upsampling_factors) + # WARNING: don't forget to remove weight norm to re-compute each wrapped layer's weight + # removing weight norm also speeds up computation + for layer in model.sublayers(): + if isinstance(layer, WeightNormWrapper): + layer.remove_weight_norm() - n_loop = model_config["n_loop"] - n_layer = model_config["n_layer"] - residual_channels = model_config["residual_channels"] - output_dim = model_config["output_dim"] - loss_type = model_config["loss_type"] - log_scale_min = model_config["log_scale_min"] - decoder = WaveNet(n_loop, n_layer, residual_channels, output_dim, - n_mels, filter_size, loss_type, log_scale_min) + train_loader = fluid.io.DataLoader.from_generator( + capacity=10, return_list=True) + train_loader.set_batch_generator(train_cargo, place) - model = ConditionalWavenet(encoder, decoder) - summary(model) + valid_loader = fluid.io.DataLoader.from_generator( + capacity=10, return_list=True) + valid_loader.set_batch_generator(valid_cargo, place) - # load model parameters - checkpoint_dir = os.path.join(args.output, "checkpoints") - if args.checkpoint: - iteration = io.load_parameters( - model, checkpoint_path=args.checkpoint) - else: - iteration = io.load_parameters( - model, checkpoint_dir=checkpoint_dir, iteration=args.iteration) - assert iteration > 0, "A trained model is needed." + synthesis_dir = os.path.join(args.output, "synthesis") + if not os.path.exists(synthesis_dir): + os.makedirs(synthesis_dir) - # WARNING: don't forget to remove weight norm to re-compute each wrapped layer's weight - # removing weight norm also speeds up computation - for layer in model.sublayers(): - if isinstance(layer, WeightNormWrapper): - layer.remove_weight_norm() - - train_loader = fluid.io.DataLoader.from_generator( - capacity=10, return_list=True) - train_loader.set_batch_generator(train_cargo, place) - - valid_loader = fluid.io.DataLoader.from_generator( - capacity=10, return_list=True) - valid_loader.set_batch_generator(valid_cargo, place) - - synthesis_dir = os.path.join(args.output, "synthesis") - if not os.path.exists(synthesis_dir): - os.makedirs(synthesis_dir) - - eval_model(model, valid_loader, synthesis_dir, iteration, sample_rate) + eval_model(model, valid_loader, synthesis_dir, iteration, sample_rate) diff --git a/examples/wavenet/train.py b/examples/wavenet/train.py index 95e5c0d..328a811 100644 --- a/examples/wavenet/train.py +++ b/examples/wavenet/train.py @@ -19,9 +19,10 @@ import argparse import tqdm from tensorboardX import SummaryWriter from paddle import fluid +fluid.require_version('1.8.0') import paddle.fluid.dygraph as dg -from parakeet.data import SliceDataset, TransformDataset, DataCargo, SequentialSampler, RandomSampler +from parakeet.data import SliceDataset, TransformDataset, CacheDataset, DataCargo, SequentialSampler, RandomSampler from parakeet.models.wavenet import UpsampleNet, WaveNet, ConditionalWavenet from parakeet.utils.layer_tools import summary from parakeet.utils import io @@ -51,6 +52,13 @@ if __name__ == "__main__": with open(args.config, 'rt') as f: config = ruamel.yaml.safe_load(f) + if args.device == -1: + place = fluid.CPUPlace() + else: + place = fluid.CUDAPlace(args.device) + + dg.enable_dygraph(place) + print("Command Line Args: ") for k, v in vars(args).items(): print("{}: {}".format(k, v)) @@ -68,8 +76,9 @@ if __name__ == "__main__": ljspeech = TransformDataset(ljspeech_meta, transform) valid_size = data_config["valid_size"] - ljspeech_valid = SliceDataset(ljspeech, 0, valid_size) - ljspeech_train = SliceDataset(ljspeech, valid_size, len(ljspeech)) + ljspeech_valid = CacheDataset(SliceDataset(ljspeech, 0, valid_size)) + ljspeech_train = CacheDataset( + SliceDataset(ljspeech, valid_size, len(ljspeech))) model_config = config["model"] n_loop = model_config["n_loop"] @@ -103,93 +112,90 @@ if __name__ == "__main__": else: place = fluid.CUDAPlace(args.device) - with dg.guard(place): - model_config = config["model"] - upsampling_factors = model_config["upsampling_factors"] - encoder = UpsampleNet(upsampling_factors) + model_config = config["model"] + upsampling_factors = model_config["upsampling_factors"] + encoder = UpsampleNet(upsampling_factors) - n_loop = model_config["n_loop"] - n_layer = model_config["n_layer"] - residual_channels = model_config["residual_channels"] - output_dim = model_config["output_dim"] - loss_type = model_config["loss_type"] - log_scale_min = model_config["log_scale_min"] - decoder = WaveNet(n_loop, n_layer, residual_channels, output_dim, - n_mels, filter_size, loss_type, log_scale_min) + n_loop = model_config["n_loop"] + n_layer = model_config["n_layer"] + residual_channels = model_config["residual_channels"] + output_dim = model_config["output_dim"] + loss_type = model_config["loss_type"] + log_scale_min = model_config["log_scale_min"] + decoder = WaveNet(n_loop, n_layer, residual_channels, output_dim, n_mels, + filter_size, loss_type, log_scale_min) - model = ConditionalWavenet(encoder, decoder) - summary(model) + model = ConditionalWavenet(encoder, decoder) + summary(model) - train_config = config["train"] - learning_rate = train_config["learning_rate"] - anneal_rate = train_config["anneal_rate"] - anneal_interval = train_config["anneal_interval"] - lr_scheduler = dg.ExponentialDecay( - learning_rate, anneal_interval, anneal_rate, staircase=True) - gradiant_max_norm = train_config["gradient_max_norm"] - optim = fluid.optimizer.Adam( - lr_scheduler, - parameter_list=model.parameters(), - grad_clip=fluid.clip.ClipByGlobalNorm(gradiant_max_norm)) + train_config = config["train"] + learning_rate = train_config["learning_rate"] + anneal_rate = train_config["anneal_rate"] + anneal_interval = train_config["anneal_interval"] + lr_scheduler = dg.ExponentialDecay( + learning_rate, anneal_interval, anneal_rate, staircase=True) + gradiant_max_norm = train_config["gradient_max_norm"] + optim = fluid.optimizer.Adam( + lr_scheduler, + parameter_list=model.parameters(), + grad_clip=fluid.clip.ClipByGlobalNorm(gradiant_max_norm)) - train_loader = fluid.io.DataLoader.from_generator( - capacity=10, return_list=True) - train_loader.set_batch_generator(train_cargo, place) + train_loader = fluid.io.DataLoader.from_generator( + capacity=10, return_list=True) + train_loader.set_batch_generator(train_cargo, place) - valid_loader = fluid.io.DataLoader.from_generator( - capacity=10, return_list=True) - valid_loader.set_batch_generator(valid_cargo, place) + valid_loader = fluid.io.DataLoader.from_generator( + capacity=10, return_list=True) + valid_loader.set_batch_generator(valid_cargo, place) - max_iterations = train_config["max_iterations"] - checkpoint_interval = train_config["checkpoint_interval"] - snap_interval = train_config["snap_interval"] - eval_interval = train_config["eval_interval"] - checkpoint_dir = os.path.join(args.output, "checkpoints") - log_dir = os.path.join(args.output, "log") - writer = SummaryWriter(log_dir) + max_iterations = train_config["max_iterations"] + checkpoint_interval = train_config["checkpoint_interval"] + snap_interval = train_config["snap_interval"] + eval_interval = train_config["eval_interval"] + checkpoint_dir = os.path.join(args.output, "checkpoints") + log_dir = os.path.join(args.output, "log") + writer = SummaryWriter(log_dir) - # load parameters and optimizer, and update iterations done so far - if args.checkpoint is not None: - iteration = io.load_parameters( - model, optim, checkpoint_path=args.checkpoint) - else: - iteration = io.load_parameters( - model, - optim, - checkpoint_dir=checkpoint_dir, - iteration=args.iteration) + # load parameters and optimizer, and update iterations done so far + if args.checkpoint is not None: + iteration = io.load_parameters( + model, optim, checkpoint_path=args.checkpoint) + else: + iteration = io.load_parameters( + model, + optim, + checkpoint_dir=checkpoint_dir, + iteration=args.iteration) - global_step = iteration + 1 - iterator = iter(tqdm.tqdm(train_loader)) - while global_step <= max_iterations: - try: - batch = next(iterator) - except StopIteration as e: - iterator = iter(tqdm.tqdm(train_loader)) - batch = next(iterator) + global_step = iteration + 1 + iterator = iter(tqdm.tqdm(train_loader)) + while global_step <= max_iterations: + try: + batch = next(iterator) + except StopIteration as e: + iterator = iter(tqdm.tqdm(train_loader)) + batch = next(iterator) - audio_clips, mel_specs, audio_starts = batch + audio_clips, mel_specs, audio_starts = batch - model.train() - y_var = model(audio_clips, mel_specs, audio_starts) - loss_var = model.loss(y_var, audio_clips) - loss_var.backward() - loss_np = loss_var.numpy() + model.train() + y_var = model(audio_clips, mel_specs, audio_starts) + loss_var = model.loss(y_var, audio_clips) + loss_var.backward() + loss_np = loss_var.numpy() - writer.add_scalar("loss", loss_np[0], global_step) - writer.add_scalar("learning_rate", - optim._learning_rate.step().numpy()[0], - global_step) - optim.minimize(loss_var) - optim.clear_gradients() - print("global_step: {}\tloss: {:<8.6f}".format(global_step, - loss_np[0])) + writer.add_scalar("loss", loss_np[0], global_step) + writer.add_scalar("learning_rate", + optim._learning_rate.step().numpy()[0], global_step) + optim.minimize(loss_var) + optim.clear_gradients() + print("global_step: {}\tloss: {:<8.6f}".format(global_step, loss_np[ + 0])) - if global_step % snap_interval == 0: - valid_model(model, valid_loader, writer, global_step, - sample_rate) + if global_step % snap_interval == 0: + valid_model(model, valid_loader, writer, global_step, sample_rate) - if global_step % checkpoint_interval == 0: - io.save_parameters(checkpoint_dir, global_step, model, optim) + if global_step % checkpoint_interval == 0: + io.save_parameters(checkpoint_dir, global_step, model, optim) - global_step += 1 + global_step += 1 diff --git a/parakeet/data/sampler.py b/parakeet/data/sampler.py index 2b9d490..df2ff7a 100644 --- a/parakeet/data/sampler.py +++ b/parakeet/data/sampler.py @@ -176,6 +176,79 @@ class PartialyRandomizedSimilarTimeLengthSampler(Sampler): return len(self.sorted_indices) +class BucketSampler(Sampler): + def __init__(self, + lengths, + batch_size=4, + batch_group_size=None, + permutate=True, + num_trainers=1, + rank=0): + # maybe better implement length as a sort key + _lengths = np.array(lengths, dtype=np.int64) + self.lengths = np.sort(_lengths) + self.sorted_indices = np.argsort(_lengths) + self.num_trainers = num_trainers + self.rank = rank + + self.dataset_size = len(_lengths) + self.num_samples = int(np.ceil(self.dataset_size / num_trainers)) + self.total_size = self.num_samples * num_trainers + assert self.total_size >= self.dataset_size + + self.batch_size = batch_size + total_batch_size = num_trainers * batch_size + self.total_batch_size = total_batch_size + + if batch_group_size is None: + batch_group_size = min(total_batch_size * 32, len(self.lengths)) + if batch_group_size % total_batch_size != 0: + batch_group_size -= batch_group_size % total_batch_size + + self.batch_group_size = batch_group_size + assert batch_group_size % total_batch_size == 0 + self.permutate = permutate + + def __iter__(self): + indices = self.sorted_indices + + # Append extra samples to make it evenly distributed on all trainers. + num_extras = self.total_size - self.dataset_size + extra_indices = np.random.choice( + indices, size=(num_extras, ), replace=False) + indices = np.concatenate((indices, extra_indices)) + assert len(indices) == self.total_size + + batch_group_size = self.batch_group_size + s, e = 0, 0 + for i in range(len(indices) // batch_group_size): + s = i * batch_group_size + e = s + batch_group_size + random.shuffle(indices[s:e]) # inplace + + # Permutate batches + total_batch_size = self.total_batch_size + if self.permutate: + perm = np.arange(len(indices[:e]) // total_batch_size) + random.shuffle(perm) + indices[:e] = indices[:e].reshape( + -1, total_batch_size)[perm, :].reshape(-1) + + # Handle last elements + s += batch_group_size + #print(indices) + if s < len(indices): + random.shuffle(indices[s:]) + + # Subset samples for each trainer. + indices = indices[self.rank:self.total_size:self.num_trainers] + assert len(indices) == self.num_samples + return iter(indices) + + def __len__(self): + return len(self.sorted_indices) + + class WeightedRandomSampler(Sampler): """Samples elements from ``[0,..,len(weights)-1]`` with given probabilities (weights). Args: diff --git a/parakeet/models/deepvoice3/__init__.py b/parakeet/models/deepvoice3/__init__.py index 86f91e0..6da4164 100644 --- a/parakeet/models/deepvoice3/__init__.py +++ b/parakeet/models/deepvoice3/__init__.py @@ -15,4 +15,5 @@ from parakeet.models.deepvoice3.encoder import Encoder, ConvSpec from parakeet.models.deepvoice3.decoder import Decoder, WindowRange from parakeet.models.deepvoice3.converter import Converter +from parakeet.models.deepvoice3.loss import TTSLoss from parakeet.models.deepvoice3.model import DeepVoice3 diff --git a/parakeet/models/deepvoice3/loss.py b/parakeet/models/deepvoice3/loss.py index 8c7029d..448a7a8 100644 --- a/parakeet/models/deepvoice3/loss.py +++ b/parakeet/models/deepvoice3/loss.py @@ -210,98 +210,82 @@ class TTSLoss(object): loss = fluid.layers.reduce_mean(predicted_attention * soft_mask_) return loss - def __call__(self, - mel_hyp, - lin_hyp, - done_hyp, - attn_hyp, - mel_ref, - lin_ref, - done_ref, - input_lengths, - n_frames, - compute_lin_loss=True, - compute_mel_loss=True, - compute_done_loss=True, - compute_attn_loss=True): + def __call__(self, outputs, inputs): """Total loss Args: + outpus is a tuple of (mel_hyp, lin_hyp, attn_hyp, done_hyp). mel_hyp (Variable): shape(B, T, C_mel), dtype float32, predicted mel spectrogram. lin_hyp (Variable): shape(B, T, C_lin), dtype float32, predicted linear spectrogram. done_hyp (Variable): shape(B, T), dtype float32, predicted done probability. attn_hyp (Variable): shape(N, B, T_dec, T_enc), dtype float32, predicted attention. + + inputs is a tuple of (mel_ref, lin_ref, done_ref, input_lengths, n_frames) mel_ref (Variable): shape(B, T, C_mel), dtype float32, ground truth mel spectrogram. lin_ref (Variable): shape(B, T, C_lin), dtype float32, ground truth linear spectrogram. done_ref (Variable): shape(B, T), dtype float32, ground truth done flag. input_lengths (Variable): shape(B, ), dtype: int, encoder valid lengths. n_frames (Variable): shape(B, ), dtype: int, decoder valid lengths. - compute_lin_loss (bool, optional): whether to compute linear loss. Defaults to True. - compute_mel_loss (bool, optional): whether to compute mel loss. Defaults to True. - compute_done_loss (bool, optional): whether to compute done loss. Defaults to True. - compute_attn_loss (bool, optional): whether to compute atention loss. Defaults to True. Returns: Dict(str, Variable): details of loss. """ total_loss = 0. + mel_hyp, lin_hyp, attn_hyp, done_hyp = outputs + mel_ref, lin_ref, done_ref, input_lengths, n_frames = inputs + # n_frames # mel_lengths # decoder_lengths max_frames = lin_hyp.shape[1] max_mel_steps = max_frames // self.downsample_factor - max_decoder_steps = max_mel_steps // self.r - - decoder_mask = F.sequence_mask( - n_frames // self.downsample_factor // self.r, - max_decoder_steps, - dtype="float32") + # max_decoder_steps = max_mel_steps // self.r + # decoder_mask = F.sequence_mask(n_frames // self.downsample_factor // + # self.r, + # max_decoder_steps, + # dtype="float32") mel_mask = F.sequence_mask( n_frames // self.downsample_factor, max_mel_steps, dtype="float32") lin_mask = F.sequence_mask(n_frames, max_frames, dtype="float32") - if compute_lin_loss: - lin_hyp = lin_hyp[:, :-self.time_shift, :] - lin_ref = lin_ref[:, self.time_shift:, :] - lin_mask = lin_mask[:, self.time_shift:] - lin_l1_loss = self.l1_loss( - lin_hyp, lin_ref, lin_mask, priority_bin=self.priority_bin) - lin_bce_loss = self.binary_divergence(lin_hyp, lin_ref, lin_mask) - lin_loss = self.binary_divergence_weight * lin_bce_loss \ - + (1 - self.binary_divergence_weight) * lin_l1_loss - total_loss += lin_loss + lin_hyp = lin_hyp[:, :-self.time_shift, :] + lin_ref = lin_ref[:, self.time_shift:, :] + lin_mask = lin_mask[:, self.time_shift:] + lin_l1_loss = self.l1_loss( + lin_hyp, lin_ref, lin_mask, priority_bin=self.priority_bin) + lin_bce_loss = self.binary_divergence(lin_hyp, lin_ref, lin_mask) + lin_loss = self.binary_divergence_weight * lin_bce_loss \ + + (1 - self.binary_divergence_weight) * lin_l1_loss + total_loss += lin_loss - if compute_mel_loss: - mel_hyp = mel_hyp[:, :-self.time_shift, :] - mel_ref = mel_ref[:, self.time_shift:, :] - mel_mask = mel_mask[:, self.time_shift:] - mel_l1_loss = self.l1_loss(mel_hyp, mel_ref, mel_mask) - mel_bce_loss = self.binary_divergence(mel_hyp, mel_ref, mel_mask) - # print("=====>", mel_l1_loss.numpy()[0], mel_bce_loss.numpy()[0]) - mel_loss = self.binary_divergence_weight * mel_bce_loss \ - + (1 - self.binary_divergence_weight) * mel_l1_loss - total_loss += mel_loss + mel_hyp = mel_hyp[:, :-self.time_shift, :] + mel_ref = mel_ref[:, self.time_shift:, :] + mel_mask = mel_mask[:, self.time_shift:] + mel_l1_loss = self.l1_loss(mel_hyp, mel_ref, mel_mask) + mel_bce_loss = self.binary_divergence(mel_hyp, mel_ref, mel_mask) + # print("=====>", mel_l1_loss.numpy()[0], mel_bce_loss.numpy()[0]) + mel_loss = self.binary_divergence_weight * mel_bce_loss \ + + (1 - self.binary_divergence_weight) * mel_l1_loss + total_loss += mel_loss - if compute_attn_loss: - attn_loss = self.attention_loss(attn_hyp, - input_lengths.numpy(), - n_frames.numpy() // - (self.downsample_factor * self.r)) - total_loss += attn_loss + attn_loss = self.attention_loss(attn_hyp, + input_lengths.numpy(), + n_frames.numpy() // + (self.downsample_factor * self.r)) + total_loss += attn_loss - if compute_done_loss: - done_loss = self.done_loss(done_hyp, done_ref) - total_loss += done_loss + done_loss = self.done_loss(done_hyp, done_ref) + total_loss += done_loss - result = { + losses = { "loss": total_loss, - "mel/mel_loss": mel_loss if compute_mel_loss else None, - "mel/l1_loss": mel_l1_loss if compute_mel_loss else None, - "mel/bce_loss": mel_bce_loss if compute_mel_loss else None, - "lin/lin_loss": lin_loss if compute_lin_loss else None, - "lin/l1_loss": lin_l1_loss if compute_lin_loss else None, - "lin/bce_loss": lin_bce_loss if compute_lin_loss else None, - "done": done_loss if compute_done_loss else None, - "attn": attn_loss if compute_attn_loss else None, + "mel/mel_loss": mel_loss, + "mel/l1_loss": mel_l1_loss, + "mel/bce_loss": mel_bce_loss, + "lin/lin_loss": lin_loss, + "lin/l1_loss": lin_l1_loss, + "lin/bce_loss": lin_bce_loss, + "done": done_loss, + "attn": attn_loss, } - return result + return losses diff --git a/parakeet/models/deepvoice3/position_embedding.py b/parakeet/models/deepvoice3/position_embedding.py index e76d2c3..da4e142 100644 --- a/parakeet/models/deepvoice3/position_embedding.py +++ b/parakeet/models/deepvoice3/position_embedding.py @@ -19,6 +19,34 @@ import paddle.fluid.layers as F import paddle.fluid.dygraph as dg +def lookup(weight, indices, padding_idx): + out = fluid.core.ops.lookup_table_v2( + weight, indices, 'is_sparse', False, 'is_distributed', False, + 'remote_prefetch', False, 'padding_idx', padding_idx) + return out + + +def compute_position_embedding_single_speaker(radians, speaker_position_rate): + """Compute sin/cos interleaved matrix from the radians. + + Arg: + radians (Variable): shape(n_vocab, embed_dim), dtype float32, the radians matrix. + speaker_position_rate (float or Variable): float or Variable of shape(1, ), speaker positioning rate. + + Returns: + Variable: shape(n_vocab, embed_dim), the sin, cos interleaved matrix. + """ + _, embed_dim = radians.shape + scaled_radians = radians * speaker_position_rate + + odd_mask = (np.arange(embed_dim) % 2).astype(np.float32) + odd_mask = dg.to_variable(odd_mask) + + out = odd_mask * F.cos(scaled_radians) \ + + (1 - odd_mask) * F.sin(scaled_radians) + return out + + def compute_position_embedding(radians, speaker_position_rate): """Compute sin/cos interleaved matrix from the radians. @@ -106,16 +134,14 @@ class PositionEmbedding(dg.Layer): """ batch_size, time_steps = indices.shape - # convert speaker_position_rate to a Variable with shape(B, ) - if isinstance(speaker_position_rate, float): - speaker_position_rate = dg.to_variable( - np.array([speaker_position_rate]).astype("float32")) - speaker_position_rate = F.expand(speaker_position_rate, - [batch_size]) - elif isinstance(speaker_position_rate, fluid.framework.Variable) \ - and list(speaker_position_rate.shape) == [1]: - speaker_position_rate = F.expand(speaker_position_rate, - [batch_size]) + if isinstance(speaker_position_rate, float) or \ + (isinstance(speaker_position_rate, fluid.framework.Variable) + and list(speaker_position_rate.shape) == [1]): + temp_weight = compute_position_embedding_single_speaker( + self.weight, speaker_position_rate) + out = lookup(temp_weight, indices, 0) + return out + assert len(speaker_position_rate.shape) == 1 and \ list(speaker_position_rate.shape) == [batch_size] @@ -128,6 +154,5 @@ class PositionEmbedding(dg.Layer): 0, batch_size, 1, dtype="int64"), [1]), [1, time_steps]) # (B, T, 2) gather_nd_id = F.stack([batch_id, indices], -1) - out = F.gather_nd(weight, gather_nd_id) return out diff --git a/parakeet/modules/weight_norm.py b/parakeet/modules/weight_norm.py index b48a686..7f68cd9 100644 --- a/parakeet/modules/weight_norm.py +++ b/parakeet/modules/weight_norm.py @@ -57,14 +57,44 @@ def norm_except(param, dim, power): return norm_except(transposed_param, dim=0, power=power) -def compute_weight(v, g, dim, power): - assert len(g.shape) == 1, "magnitude should be a vector" - v_normalized = F.elementwise_div( - v, (norm_except(v, dim, power) + 1e-12), axis=dim) +def compute_l2_normalized_weight(v, g, dim): + shape = v.shape + ndim = len(shape) + + if dim is None: + v_normalized = v / (F.reduce_sum(F.square(v)) + 1e-12) + elif dim == 0: + param_matrix = F.reshape(v, (shape[0], np.prod(shape[1:]))) + v_normalized = F.l2_normalize(param_matrix, axis=1) + elif dim == -1 or dim == ndim - 1: + param_matrix = F.reshape(v, (np.prod(shape[:-1]), shape[-1])) + v_normalized = F.l2_normalize(param_matrix, axis=0) + else: + perm = list(range(ndim)) + perm[0] = dim + perm[dim] = 0 + transposed_param = F.transpose(v, perm) + param_matrix = F.reshape( + transposed_param, + (transposed_param.shape[0], np.prod(transposed_param.shape[1:]))) + v_normalized = F.l2_normalize(param_matrix, axis=1) + v_normalized = F.transpose(v_normalized, perm) + v_normalized = F.reshape(v_normalized, shape) weight = F.elementwise_mul(v_normalized, g, axis=dim) return weight +def compute_weight(v, g, dim, power): + assert len(g.shape) == 1, "magnitude should be a vector" + if power == 2: + return compute_l2_normalized_weight(v, g, dim) + else: + v_normalized = F.elementwise_div( + v, (norm_except(v, dim, power) + 1e-12), axis=dim) + weight = F.elementwise_mul(v_normalized, g, axis=dim) + return weight + + class WeightNormWrapper(dg.Layer): def __init__(self, layer, param_name="weight", dim=0, power=2): super(WeightNormWrapper, self).__init__() diff --git a/setup.py b/setup.py index 2384837..062a02d 100644 --- a/setup.py +++ b/setup.py @@ -15,6 +15,8 @@ import os import io import re +import six +import sys from setuptools import setup, find_packages @@ -63,6 +65,7 @@ setup_info = dict( 'pandas', 'sox', 'soundfile', + 'llvmlite==0.31.0' if sys.version_info < (3, 6) else "llvmlite", ], # Package info