diff --git a/parakeet/modules/positional_encoding.py b/parakeet/modules/positional_encoding.py index f7e9c18..5d862ff 100644 --- a/parakeet/modules/positional_encoding.py +++ b/parakeet/modules/positional_encoding.py @@ -1,7 +1,9 @@ import math +import numpy as np import paddle from paddle.nn import functional as F + def positional_encoding(start_index, length, size, dtype=None): """ Generate standard positional encoding. @@ -9,9 +11,6 @@ def positional_encoding(start_index, length, size, dtype=None): pe(pos, 2i) = sin(pos / 10000 ** (2i / size)) pe(pos, 2i+1) = cos(pos / 10000 ** (2i / size)) - This implementation deviates from the standard implementation in that the - sin/cos channels are not interleaved. - Args: start_index (int): the start index. length (int): the length of the positional encoding. @@ -23,40 +22,11 @@ def positional_encoding(start_index, length, size, dtype=None): if (size % 2 != 0): raise ValueError("size should be divisible by 2") dtype = dtype or paddle.get_default_dtype() - channel = paddle.arange(0, size, 2, dtype=dtype) - index = paddle.arange(start_index, start_index + length, 1, dtype=dtype) - p = paddle.unsqueeze(index, -1) / (10000 ** (channel / float(size))) - encodings = paddle.concat([paddle.sin(p), paddle.cos(p)], axis=-1) - return encodings - -def scalable_positional_encoding(start_index, length, size, omega): - """ - A scalable positional encoding, which extends the standard positional - encoding by adding positioning rate (denoted as omega). - - pe(pos, 2i) = sin(omega * pos / 10000 ** (2i / size)) - pe(pos, 2i+1) = cos(omega * pos / 10000 ** (2i / size)) - - This implementation deviates from the standard implementation in that the - sin/cos channels are not interleaved. - - Args: - start_index (int): the start index. - length (int): the length of the positional encoding. - size (int): positional encoding dimension. - omgea (Tensor): shape(batch_size, ), positional rates. - - Returns: - encodings: shape(batch_size, length, size), position embedding, the - data type is the same as omega. - """ - dtype = omega.dtype - index = paddle.arange(start_index, start_index + length, 1, dtype=dtype) - channel = paddle.arange(0, size, 2, dtype=dtype) - - p = paddle.unsqueeze(omega, [1, 2]) \ - * paddle.unsqueeze(index, [1]) \ - / (10000 ** (channel / float(size))) - - encodings = paddle.concat([paddle.sin(p), paddle.cos(p)], axis=-1) + channel = np.arange(0, size, 2) + index = np.arange(start_index, start_index + length, 1) + p = np.expand_dims(index, -1) / (10000 ** (channel / float(size))) + encodings = np.zeros([length, size]) + encodings[:, 0::2] = np.sin(p) + encodings[:, 1::2] = np.cos(p) + encodings = paddle.to_tensor(encodings) return encodings